1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2023-2025 Christoph Hellwig.
* Copyright (c) 2024-2025, Western Digital Corporation or its affiliates.
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_error.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_iomap.h"
#include "xfs_trans.h"
#include "xfs_alloc.h"
#include "xfs_bmap.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_refcount.h"
#include "xfs_rtbitmap.h"
#include "xfs_rtrmap_btree.h"
#include "xfs_zone_alloc.h"
#include "xfs_zone_priv.h"
#include "xfs_zones.h"
#include "xfs_trace.h"
void
xfs_open_zone_put(
struct xfs_open_zone *oz)
{
if (atomic_dec_and_test(&oz->oz_ref)) {
xfs_rtgroup_rele(oz->oz_rtg);
kfree(oz);
}
}
static void
xfs_open_zone_mark_full(
struct xfs_open_zone *oz)
{
struct xfs_rtgroup *rtg = oz->oz_rtg;
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_zone_info *zi = mp->m_zone_info;
trace_xfs_zone_full(rtg);
WRITE_ONCE(rtg->rtg_open_zone, NULL);
spin_lock(&zi->zi_open_zones_lock);
if (oz->oz_is_gc) {
ASSERT(current == zi->zi_gc_thread);
zi->zi_open_gc_zone = NULL;
} else {
zi->zi_nr_open_zones--;
list_del_init(&oz->oz_entry);
}
spin_unlock(&zi->zi_open_zones_lock);
xfs_open_zone_put(oz);
wake_up_all(&zi->zi_zone_wait);
}
static void
xfs_zone_record_blocks(
struct xfs_trans *tp,
xfs_fsblock_t fsbno,
xfs_filblks_t len,
struct xfs_open_zone *oz,
bool used)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_rtgroup *rtg = oz->oz_rtg;
struct xfs_inode *rmapip = rtg_rmap(rtg);
trace_xfs_zone_record_blocks(oz, xfs_rtb_to_rgbno(mp, fsbno), len);
xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
xfs_rtgroup_trans_join(tp, rtg, XFS_RTGLOCK_RMAP);
if (used) {
rmapip->i_used_blocks += len;
ASSERT(rmapip->i_used_blocks <= rtg_blocks(rtg));
} else {
xfs_add_frextents(mp, len);
}
oz->oz_written += len;
if (oz->oz_written == rtg_blocks(rtg))
xfs_open_zone_mark_full(oz);
xfs_trans_log_inode(tp, rmapip, XFS_ILOG_CORE);
}
static int
xfs_zoned_map_extent(
struct xfs_trans *tp,
struct xfs_inode *ip,
struct xfs_bmbt_irec *new,
struct xfs_open_zone *oz,
xfs_fsblock_t old_startblock)
{
struct xfs_bmbt_irec data;
int nmaps = 1;
int error;
/* Grab the corresponding mapping in the data fork. */
error = xfs_bmapi_read(ip, new->br_startoff, new->br_blockcount, &data,
&nmaps, 0);
if (error)
return error;
/*
* Cap the update to the existing extent in the data fork because we can
* only overwrite one extent at a time.
*/
ASSERT(new->br_blockcount >= data.br_blockcount);
new->br_blockcount = data.br_blockcount;
/*
* If a data write raced with this GC write, keep the existing data in
* the data fork, mark our newly written GC extent as reclaimable, then
* move on to the next extent.
*/
if (old_startblock != NULLFSBLOCK &&
old_startblock != data.br_startblock)
goto skip;
trace_xfs_reflink_cow_remap_from(ip, new);
trace_xfs_reflink_cow_remap_to(ip, &data);
error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
XFS_IEXT_REFLINK_END_COW_CNT);
if (error)
return error;
if (data.br_startblock != HOLESTARTBLOCK) {
ASSERT(data.br_startblock != DELAYSTARTBLOCK);
ASSERT(!isnullstartblock(data.br_startblock));
xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data);
if (xfs_is_reflink_inode(ip)) {
xfs_refcount_decrease_extent(tp, true, &data);
} else {
error = xfs_free_extent_later(tp, data.br_startblock,
data.br_blockcount, NULL,
XFS_AG_RESV_NONE,
XFS_FREE_EXTENT_REALTIME);
if (error)
return error;
}
}
xfs_zone_record_blocks(tp, new->br_startblock, new->br_blockcount, oz,
true);
/* Map the new blocks into the data fork. */
xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, new);
return 0;
skip:
trace_xfs_reflink_cow_remap_skip(ip, new);
xfs_zone_record_blocks(tp, new->br_startblock, new->br_blockcount, oz,
false);
return 0;
}
int
xfs_zoned_end_io(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t count,
xfs_daddr_t daddr,
struct xfs_open_zone *oz,
xfs_fsblock_t old_startblock)
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
struct xfs_bmbt_irec new = {
.br_startoff = XFS_B_TO_FSBT(mp, offset),
.br_startblock = xfs_daddr_to_rtb(mp, daddr),
.br_state = XFS_EXT_NORM,
};
unsigned int resblks =
XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
struct xfs_trans *tp;
int error;
if (xfs_is_shutdown(mp))
return -EIO;
while (new.br_startoff < end_fsb) {
new.br_blockcount = end_fsb - new.br_startoff;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
XFS_TRANS_RESERVE | XFS_TRANS_RES_FDBLKS, &tp);
if (error)
return error;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
error = xfs_zoned_map_extent(tp, ip, &new, oz, old_startblock);
if (error)
xfs_trans_cancel(tp);
else
error = xfs_trans_commit(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error)
return error;
new.br_startoff += new.br_blockcount;
new.br_startblock += new.br_blockcount;
if (old_startblock != NULLFSBLOCK)
old_startblock += new.br_blockcount;
}
return 0;
}
/*
* "Free" blocks allocated in a zone.
*
* Just decrement the used blocks counter and report the space as freed.
*/
int
xfs_zone_free_blocks(
struct xfs_trans *tp,
struct xfs_rtgroup *rtg,
xfs_fsblock_t fsbno,
xfs_filblks_t len)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_inode *rmapip = rtg_rmap(rtg);
xfs_assert_ilocked(rmapip, XFS_ILOCK_EXCL);
if (len > rmapip->i_used_blocks) {
xfs_err(mp,
"trying to free more blocks (%lld) than used counter (%u).",
len, rmapip->i_used_blocks);
ASSERT(len <= rmapip->i_used_blocks);
xfs_rtginode_mark_sick(rtg, XFS_RTGI_RMAP);
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return -EFSCORRUPTED;
}
trace_xfs_zone_free_blocks(rtg, xfs_rtb_to_rgbno(mp, fsbno), len);
rmapip->i_used_blocks -= len;
xfs_add_frextents(mp, len);
xfs_trans_log_inode(tp, rmapip, XFS_ILOG_CORE);
return 0;
}
/*
* Check if the zone containing the data just before the offset we are
* writing to is still open and has space.
*/
static struct xfs_open_zone *
xfs_last_used_zone(
struct iomap_ioend *ioend)
{
struct xfs_inode *ip = XFS_I(ioend->io_inode);
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t offset_fsb = XFS_B_TO_FSB(mp, ioend->io_offset);
struct xfs_rtgroup *rtg = NULL;
struct xfs_open_zone *oz = NULL;
struct xfs_iext_cursor icur;
struct xfs_bmbt_irec got;
xfs_ilock(ip, XFS_ILOCK_SHARED);
if (!xfs_iext_lookup_extent_before(ip, &ip->i_df, &offset_fsb,
&icur, &got)) {
xfs_iunlock(ip, XFS_ILOCK_SHARED);
return NULL;
}
xfs_iunlock(ip, XFS_ILOCK_SHARED);
rtg = xfs_rtgroup_grab(mp, xfs_rtb_to_rgno(mp, got.br_startblock));
if (!rtg)
return NULL;
xfs_ilock(rtg_rmap(rtg), XFS_ILOCK_SHARED);
oz = READ_ONCE(rtg->rtg_open_zone);
if (oz && (oz->oz_is_gc || !atomic_inc_not_zero(&oz->oz_ref)))
oz = NULL;
xfs_iunlock(rtg_rmap(rtg), XFS_ILOCK_SHARED);
xfs_rtgroup_rele(rtg);
return oz;
}
static struct xfs_group *
xfs_find_free_zone(
struct xfs_mount *mp,
unsigned long start,
unsigned long end)
{
struct xfs_zone_info *zi = mp->m_zone_info;
XA_STATE (xas, &mp->m_groups[XG_TYPE_RTG].xa, start);
struct xfs_group *xg;
xas_lock(&xas);
xas_for_each_marked(&xas, xg, end, XFS_RTG_FREE)
if (atomic_inc_not_zero(&xg->xg_active_ref))
goto found;
xas_unlock(&xas);
return NULL;
found:
xas_clear_mark(&xas, XFS_RTG_FREE);
atomic_dec(&zi->zi_nr_free_zones);
zi->zi_free_zone_cursor = xg->xg_gno;
xas_unlock(&xas);
return xg;
}
static struct xfs_open_zone *
xfs_init_open_zone(
struct xfs_rtgroup *rtg,
xfs_rgblock_t write_pointer,
bool is_gc)
{
struct xfs_open_zone *oz;
oz = kzalloc(sizeof(*oz), GFP_NOFS | __GFP_NOFAIL);
spin_lock_init(&oz->oz_alloc_lock);
atomic_set(&oz->oz_ref, 1);
oz->oz_rtg = rtg;
oz->oz_write_pointer = write_pointer;
oz->oz_written = write_pointer;
oz->oz_is_gc = is_gc;
/*
* All dereferences of rtg->rtg_open_zone hold the ILOCK for the rmap
* inode, but we don't really want to take that here because we are
* under the zone_list_lock. Ensure the pointer is only set for a fully
* initialized open zone structure so that a racy lookup finding it is
* fine.
*/
WRITE_ONCE(rtg->rtg_open_zone, oz);
return oz;
}
/*
* Find a completely free zone, open it, and return a reference.
*/
struct xfs_open_zone *
xfs_open_zone(
struct xfs_mount *mp,
bool is_gc)
{
struct xfs_zone_info *zi = mp->m_zone_info;
struct xfs_group *xg;
xg = xfs_find_free_zone(mp, zi->zi_free_zone_cursor, ULONG_MAX);
if (!xg)
xg = xfs_find_free_zone(mp, 0, zi->zi_free_zone_cursor);
if (!xg)
return NULL;
set_current_state(TASK_RUNNING);
return xfs_init_open_zone(to_rtg(xg), 0, is_gc);
}
static struct xfs_open_zone *
xfs_try_open_zone(
struct xfs_mount *mp)
{
struct xfs_zone_info *zi = mp->m_zone_info;
struct xfs_open_zone *oz;
if (zi->zi_nr_open_zones >= mp->m_max_open_zones - XFS_OPEN_GC_ZONES)
return NULL;
if (atomic_read(&zi->zi_nr_free_zones) <
XFS_GC_ZONES - XFS_OPEN_GC_ZONES)
return NULL;
/*
* Increment the open zone count to reserve our slot before dropping
* zi_open_zones_lock.
*/
zi->zi_nr_open_zones++;
spin_unlock(&zi->zi_open_zones_lock);
oz = xfs_open_zone(mp, false);
spin_lock(&zi->zi_open_zones_lock);
if (!oz) {
zi->zi_nr_open_zones--;
return NULL;
}
atomic_inc(&oz->oz_ref);
list_add_tail(&oz->oz_entry, &zi->zi_open_zones);
/*
* If this was the last free zone, other waiters might be waiting
* on us to write to it as well.
*/
wake_up_all(&zi->zi_zone_wait);
trace_xfs_zone_opened(oz->oz_rtg);
return oz;
}
static bool
xfs_try_use_zone(
struct xfs_zone_info *zi,
struct xfs_open_zone *oz)
{
if (oz->oz_write_pointer == rtg_blocks(oz->oz_rtg))
return false;
if (!atomic_inc_not_zero(&oz->oz_ref))
return false;
/*
* If we couldn't match by inode or life time we just pick the first
* zone with enough space above. For that we want the least busy zone
* for some definition of "least" busy. For now this simple LRU
* algorithm that rotates every zone to the end of the list will do it,
* even if it isn't exactly cache friendly.
*/
if (!list_is_last(&oz->oz_entry, &zi->zi_open_zones))
list_move_tail(&oz->oz_entry, &zi->zi_open_zones);
return true;
}
static struct xfs_open_zone *
xfs_select_open_zone_lru(
struct xfs_zone_info *zi)
{
struct xfs_open_zone *oz;
lockdep_assert_held(&zi->zi_open_zones_lock);
list_for_each_entry(oz, &zi->zi_open_zones, oz_entry)
if (xfs_try_use_zone(zi, oz))
return oz;
cond_resched_lock(&zi->zi_open_zones_lock);
return NULL;
}
static struct xfs_open_zone *
xfs_select_open_zone_mru(
struct xfs_zone_info *zi)
{
struct xfs_open_zone *oz;
lockdep_assert_held(&zi->zi_open_zones_lock);
list_for_each_entry_reverse(oz, &zi->zi_open_zones, oz_entry)
if (xfs_try_use_zone(zi, oz))
return oz;
cond_resched_lock(&zi->zi_open_zones_lock);
return NULL;
}
/*
* Try to pack inodes that are written back after they were closed tight instead
* of trying to open new zones for them or spread them to the least recently
* used zone. This optimizes the data layout for workloads that untar or copy
* a lot of small files. Right now this does not separate multiple such
* streams.
*/
static inline bool xfs_zoned_pack_tight(struct xfs_inode *ip)
{
return !inode_is_open_for_write(VFS_I(ip)) &&
!(ip->i_diflags & XFS_DIFLAG_APPEND);
}
/*
* Pick a new zone for writes.
*
* If we aren't using up our budget of open zones just open a new one from the
* freelist. Else try to find one that matches the expected data lifetime. If
* we don't find one that is good pick any zone that is available.
*/
static struct xfs_open_zone *
xfs_select_zone_nowait(
struct xfs_mount *mp,
bool pack_tight)
{
struct xfs_zone_info *zi = mp->m_zone_info;
struct xfs_open_zone *oz = NULL;
if (xfs_is_shutdown(mp))
return NULL;
spin_lock(&zi->zi_open_zones_lock);
if (pack_tight)
oz = xfs_select_open_zone_mru(zi);
if (oz)
goto out_unlock;
/*
* See if we can open a new zone and use that.
*/
oz = xfs_try_open_zone(mp);
if (oz)
goto out_unlock;
oz = xfs_select_open_zone_lru(zi);
out_unlock:
spin_unlock(&zi->zi_open_zones_lock);
return oz;
}
static struct xfs_open_zone *
xfs_select_zone(
struct xfs_mount *mp,
bool pack_tight)
{
struct xfs_zone_info *zi = mp->m_zone_info;
DEFINE_WAIT (wait);
struct xfs_open_zone *oz;
oz = xfs_select_zone_nowait(mp, pack_tight);
if (oz)
return oz;
for (;;) {
prepare_to_wait(&zi->zi_zone_wait, &wait, TASK_UNINTERRUPTIBLE);
oz = xfs_select_zone_nowait(mp, pack_tight);
if (oz)
break;
schedule();
}
finish_wait(&zi->zi_zone_wait, &wait);
return oz;
}
static unsigned int
xfs_zone_alloc_blocks(
struct xfs_open_zone *oz,
xfs_filblks_t count_fsb,
sector_t *sector,
bool *is_seq)
{
struct xfs_rtgroup *rtg = oz->oz_rtg;
struct xfs_mount *mp = rtg_mount(rtg);
xfs_rgblock_t rgbno;
spin_lock(&oz->oz_alloc_lock);
count_fsb = min3(count_fsb, XFS_MAX_BMBT_EXTLEN,
(xfs_filblks_t)rtg_blocks(rtg) - oz->oz_write_pointer);
if (!count_fsb) {
spin_unlock(&oz->oz_alloc_lock);
return 0;
}
rgbno = oz->oz_write_pointer;
oz->oz_write_pointer += count_fsb;
spin_unlock(&oz->oz_alloc_lock);
trace_xfs_zone_alloc_blocks(oz, rgbno, count_fsb);
*sector = xfs_gbno_to_daddr(&rtg->rtg_group, 0);
*is_seq = bdev_zone_is_seq(mp->m_rtdev_targp->bt_bdev, *sector);
if (!*is_seq)
*sector += XFS_FSB_TO_BB(mp, rgbno);
return XFS_FSB_TO_B(mp, count_fsb);
}
void
xfs_mark_rtg_boundary(
struct iomap_ioend *ioend)
{
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
sector_t sector = ioend->io_bio.bi_iter.bi_sector;
if (xfs_rtb_to_rgbno(mp, xfs_daddr_to_rtb(mp, sector)) == 0)
ioend->io_flags |= IOMAP_IOEND_BOUNDARY;
}
static void
xfs_submit_zoned_bio(
struct iomap_ioend *ioend,
struct xfs_open_zone *oz,
bool is_seq)
{
ioend->io_bio.bi_iter.bi_sector = ioend->io_sector;
ioend->io_private = oz;
atomic_inc(&oz->oz_ref); /* for xfs_zoned_end_io */
if (is_seq) {
ioend->io_bio.bi_opf &= ~REQ_OP_WRITE;
ioend->io_bio.bi_opf |= REQ_OP_ZONE_APPEND;
} else {
xfs_mark_rtg_boundary(ioend);
}
submit_bio(&ioend->io_bio);
}
void
xfs_zone_alloc_and_submit(
struct iomap_ioend *ioend,
struct xfs_open_zone **oz)
{
struct xfs_inode *ip = XFS_I(ioend->io_inode);
struct xfs_mount *mp = ip->i_mount;
bool pack_tight = xfs_zoned_pack_tight(ip);
unsigned int alloc_len;
struct iomap_ioend *split;
bool is_seq;
if (xfs_is_shutdown(mp))
goto out_error;
/*
* If we don't have a cached zone in this write context, see if the
* last extent before the one we are writing to points to an active
* zone. If so, just continue writing to it.
*/
if (!*oz && ioend->io_offset)
*oz = xfs_last_used_zone(ioend);
if (!*oz) {
select_zone:
*oz = xfs_select_zone(mp, pack_tight);
if (!*oz)
goto out_error;
}
alloc_len = xfs_zone_alloc_blocks(*oz, XFS_B_TO_FSB(mp, ioend->io_size),
&ioend->io_sector, &is_seq);
if (!alloc_len) {
xfs_open_zone_put(*oz);
goto select_zone;
}
while ((split = iomap_split_ioend(ioend, alloc_len, is_seq))) {
if (IS_ERR(split))
goto out_split_error;
alloc_len -= split->io_bio.bi_iter.bi_size;
xfs_submit_zoned_bio(split, *oz, is_seq);
if (!alloc_len) {
xfs_open_zone_put(*oz);
goto select_zone;
}
}
xfs_submit_zoned_bio(ioend, *oz, is_seq);
return;
out_split_error:
ioend->io_bio.bi_status = errno_to_blk_status(PTR_ERR(split));
out_error:
bio_io_error(&ioend->io_bio);
}
void
xfs_zoned_wake_all(
struct xfs_mount *mp)
{
if (!(mp->m_super->s_flags & SB_ACTIVE))
return; /* can happen during log recovery */
wake_up_all(&mp->m_zone_info->zi_zone_wait);
}
/*
* Check if @rgbno in @rgb is a potentially valid block. It might still be
* unused, but that information is only found in the rmap.
*/
bool
xfs_zone_rgbno_is_valid(
struct xfs_rtgroup *rtg,
xfs_rgnumber_t rgbno)
{
lockdep_assert_held(&rtg_rmap(rtg)->i_lock);
if (rtg->rtg_open_zone)
return rgbno < rtg->rtg_open_zone->oz_write_pointer;
return !xa_get_mark(&rtg_mount(rtg)->m_groups[XG_TYPE_RTG].xa,
rtg_rgno(rtg), XFS_RTG_FREE);
}
static void
xfs_free_open_zones(
struct xfs_zone_info *zi)
{
struct xfs_open_zone *oz;
spin_lock(&zi->zi_open_zones_lock);
while ((oz = list_first_entry_or_null(&zi->zi_open_zones,
struct xfs_open_zone, oz_entry))) {
list_del(&oz->oz_entry);
xfs_open_zone_put(oz);
}
spin_unlock(&zi->zi_open_zones_lock);
}
struct xfs_init_zones {
struct xfs_mount *mp;
uint64_t available;
uint64_t reclaimable;
};
static int
xfs_init_zone(
struct xfs_init_zones *iz,
struct xfs_rtgroup *rtg,
struct blk_zone *zone)
{
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_zone_info *zi = mp->m_zone_info;
uint64_t used = rtg_rmap(rtg)->i_used_blocks;
xfs_rgblock_t write_pointer, highest_rgbno;
if (zone && !xfs_zone_validate(zone, rtg, &write_pointer))
return -EFSCORRUPTED;
/*
* For sequential write required zones we retrieved the hardware write
* pointer above.
*
* For conventional zones or conventional devices we don't have that
* luxury. Instead query the rmap to find the highest recorded block
* and set the write pointer to the block after that. In case of a
* power loss this misses blocks where the data I/O has completed but
* not recorded in the rmap yet, and it also rewrites blocks if the most
* recently written ones got deleted again before unmount, but this is
* the best we can do without hardware support.
*/
if (!zone || zone->cond == BLK_ZONE_COND_NOT_WP) {
xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
highest_rgbno = xfs_rtrmap_highest_rgbno(rtg);
if (highest_rgbno == NULLRGBLOCK)
write_pointer = 0;
else
write_pointer = highest_rgbno + 1;
xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_RMAP);
}
if (write_pointer == 0) {
/* zone is empty */
atomic_inc(&zi->zi_nr_free_zones);
xfs_group_set_mark(&rtg->rtg_group, XFS_RTG_FREE);
iz->available += rtg_blocks(rtg);
} else if (write_pointer < rtg_blocks(rtg)) {
/* zone is open */
struct xfs_open_zone *oz;
atomic_inc(&rtg_group(rtg)->xg_active_ref);
oz = xfs_init_open_zone(rtg, write_pointer, false);
list_add_tail(&oz->oz_entry, &zi->zi_open_zones);
zi->zi_nr_open_zones++;
iz->available += (rtg_blocks(rtg) - write_pointer);
iz->reclaimable += write_pointer - used;
} else if (used < rtg_blocks(rtg)) {
/* zone fully written, but has freed blocks */
iz->reclaimable += (rtg_blocks(rtg) - used);
}
return 0;
}
static int
xfs_get_zone_info_cb(
struct blk_zone *zone,
unsigned int idx,
void *data)
{
struct xfs_init_zones *iz = data;
struct xfs_mount *mp = iz->mp;
xfs_fsblock_t zsbno = xfs_daddr_to_rtb(mp, zone->start);
xfs_rgnumber_t rgno;
struct xfs_rtgroup *rtg;
int error;
if (xfs_rtb_to_rgbno(mp, zsbno) != 0) {
xfs_warn(mp, "mismatched zone start 0x%llx.", zsbno);
return -EFSCORRUPTED;
}
rgno = xfs_rtb_to_rgno(mp, zsbno);
rtg = xfs_rtgroup_grab(mp, rgno);
if (!rtg) {
xfs_warn(mp, "realtime group not found for zone %u.", rgno);
return -EFSCORRUPTED;
}
error = xfs_init_zone(iz, rtg, zone);
xfs_rtgroup_rele(rtg);
return error;
}
/*
* Calculate the max open zone limit based on the of number of
* backing zones available
*/
static inline uint32_t
xfs_max_open_zones(
struct xfs_mount *mp)
{
unsigned int max_open, max_open_data_zones;
/*
* We need two zones for every open data zone,
* one in reserve as we don't reclaim open zones. One data zone
* and its spare is included in XFS_MIN_ZONES.
*/
max_open_data_zones = (mp->m_sb.sb_rgcount - XFS_MIN_ZONES) / 2 + 1;
max_open = max_open_data_zones + XFS_OPEN_GC_ZONES;
/*
* Cap the max open limit to 1/4 of available space
*/
max_open = min(max_open, mp->m_sb.sb_rgcount / 4);
return max(XFS_MIN_OPEN_ZONES, max_open);
}
/*
* Normally we use the open zone limit that the device reports. If there is
* none let the user pick one from the command line.
*
* If the device doesn't report an open zone limit and there is no override,
* allow to hold about a quarter of the zones open. In theory we could allow
* all to be open, but at that point we run into GC deadlocks because we can't
* reclaim open zones.
*
* When used on conventional SSDs a lower open limit is advisable as we'll
* otherwise overwhelm the FTL just as much as a conventional block allocator.
*
* Note: To debug the open zone management code, force max_open to 1 here.
*/
static int
xfs_calc_open_zones(
struct xfs_mount *mp)
{
struct block_device *bdev = mp->m_rtdev_targp->bt_bdev;
unsigned int bdev_open_zones = bdev_max_open_zones(bdev);
if (!mp->m_max_open_zones) {
if (bdev_open_zones)
mp->m_max_open_zones = bdev_open_zones;
else
mp->m_max_open_zones = xfs_max_open_zones(mp);
}
if (mp->m_max_open_zones < XFS_MIN_OPEN_ZONES) {
xfs_notice(mp, "need at least %u open zones.",
XFS_MIN_OPEN_ZONES);
return -EIO;
}
if (bdev_open_zones && bdev_open_zones < mp->m_max_open_zones) {
mp->m_max_open_zones = bdev_open_zones;
xfs_info(mp, "limiting open zones to %u due to hardware limit.\n",
bdev_open_zones);
}
if (mp->m_max_open_zones > xfs_max_open_zones(mp)) {
mp->m_max_open_zones = xfs_max_open_zones(mp);
xfs_info(mp,
"limiting open zones to %u due to total zone count (%u)",
mp->m_max_open_zones, mp->m_sb.sb_rgcount);
}
return 0;
}
static struct xfs_zone_info *
xfs_alloc_zone_info(
struct xfs_mount *mp)
{
struct xfs_zone_info *zi;
zi = kzalloc(sizeof(*zi), GFP_KERNEL);
if (!zi)
return NULL;
INIT_LIST_HEAD(&zi->zi_open_zones);
INIT_LIST_HEAD(&zi->zi_reclaim_reservations);
spin_lock_init(&zi->zi_reset_list_lock);
spin_lock_init(&zi->zi_open_zones_lock);
spin_lock_init(&zi->zi_reservation_lock);
init_waitqueue_head(&zi->zi_zone_wait);
return zi;
}
static void
xfs_free_zone_info(
struct xfs_zone_info *zi)
{
xfs_free_open_zones(zi);
kfree(zi);
}
int
xfs_mount_zones(
struct xfs_mount *mp)
{
struct xfs_init_zones iz = {
.mp = mp,
};
struct xfs_buftarg *bt = mp->m_rtdev_targp;
int error;
if (!bt) {
xfs_notice(mp, "RT device missing.");
return -EINVAL;
}
if (!xfs_has_rtgroups(mp) || !xfs_has_rmapbt(mp)) {
xfs_notice(mp, "invalid flag combination.");
return -EFSCORRUPTED;
}
if (mp->m_sb.sb_rextsize != 1) {
xfs_notice(mp, "zoned file systems do not support rextsize.");
return -EFSCORRUPTED;
}
if (mp->m_sb.sb_rgcount < XFS_MIN_ZONES) {
xfs_notice(mp,
"zoned file systems need to have at least %u zones.", XFS_MIN_ZONES);
return -EFSCORRUPTED;
}
error = xfs_calc_open_zones(mp);
if (error)
return error;
mp->m_zone_info = xfs_alloc_zone_info(mp);
if (!mp->m_zone_info)
return -ENOMEM;
xfs_info(mp, "%u zones of %u blocks size (%u max open)",
mp->m_sb.sb_rgcount, mp->m_groups[XG_TYPE_RTG].blocks,
mp->m_max_open_zones);
trace_xfs_zones_mount(mp);
if (bdev_is_zoned(bt->bt_bdev)) {
error = blkdev_report_zones(bt->bt_bdev,
XFS_FSB_TO_BB(mp, mp->m_sb.sb_rtstart),
mp->m_sb.sb_rgcount, xfs_get_zone_info_cb, &iz);
if (error < 0)
goto out_free_zone_info;
} else {
struct xfs_rtgroup *rtg = NULL;
while ((rtg = xfs_rtgroup_next(mp, rtg))) {
error = xfs_init_zone(&iz, rtg, NULL);
if (error)
goto out_free_zone_info;
}
}
xfs_set_freecounter(mp, XC_FREE_RTAVAILABLE, iz.available);
xfs_set_freecounter(mp, XC_FREE_RTEXTENTS,
iz.available + iz.reclaimable);
return 0;
out_free_zone_info:
xfs_free_zone_info(mp->m_zone_info);
return error;
}
void
xfs_unmount_zones(
struct xfs_mount *mp)
{
xfs_free_zone_info(mp->m_zone_info);
}
|