aboutsummaryrefslogtreecommitdiffstats
path: root/fs/fscache/object.c
diff options
context:
space:
mode:
authorLinus Torvalds <[email protected]>2022-01-12 21:45:12 +0000
committerLinus Torvalds <[email protected]>2022-01-12 21:45:12 +0000
commit8834147f9505661859ce44549bf601e2a06bba7c (patch)
treed8f1086c626c77fceb100bd2fc5ea011e1212070 /fs/fscache/object.c
parentMerge tag 'fuse-update-5.17' of git://git.kernel.org/pub/scm/linux/kernel/git... (diff)
parent9p, afs, ceph, nfs: Use current_is_kswapd() rather than gfpflags_allow_blocki... (diff)
downloadkernel-8834147f9505661859ce44549bf601e2a06bba7c.tar.gz
kernel-8834147f9505661859ce44549bf601e2a06bba7c.zip
Merge tag 'fscache-rewrite-20220111' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull fscache rewrite from David Howells: "This is a set of patches that rewrites the fscache driver and the cachefiles driver, significantly simplifying the code compared to what's upstream, removing the complex operation scheduling and object state machine in favour of something much smaller and simpler. The series is structured such that the first few patches disable fscache use by the network filesystems using it, remove the cachefiles driver entirely and as much of the fscache driver as can be got away with without causing build failures in the network filesystems. The patches after that recreate fscache and then cachefiles, attempting to add the pieces in a logical order. Finally, the filesystems are reenabled and then the very last patch changes the documentation. [!] Note: I have dropped the cifs patch for the moment, leaving local caching in cifs disabled. I've been having trouble getting that working. I think I have it done, but it needs more testing (there seem to be some test failures occurring with v5.16 also from xfstests), so I propose deferring that patch to the end of the merge window. WHY REWRITE? ============ Fscache's operation scheduling API was intended to handle sequencing of cache operations, which were all required (where possible) to run asynchronously in parallel with the operations being done by the network filesystem, whilst allowing the cache to be brought online and offline and to interrupt service for invalidation. With the advent of the tmpfile capacity in the VFS, however, an opportunity arises to do invalidation much more simply, without having to wait for I/O that's actually in progress: Cachefiles can simply create a tmpfile, cut over the file pointer for the backing object attached to a cookie and abandon the in-progress I/O, dismissing it upon completion. Future work here would involve using Omar Sandoval's vfs_link() with AT_LINK_REPLACE[1] to allow an extant file to be displaced by a new hard link from a tmpfile as currently I have to unlink the old file first. These patches can also simplify the object state handling as I/O operations to the cache don't all have to be brought to a stop in order to invalidate a file. To that end, and with an eye on to writing a new backing cache model in the future, I've taken the opportunity to simplify the indexing structure. I've separated the index cookie concept from the file cookie concept by C type now. The former is now called a "volume cookie" (struct fscache_volume) and there is a container of file cookies. There are then just the two levels. All the index cookie levels are collapsed into a single volume cookie, and this has a single printable string as a key. For instance, an AFS volume would have a key of something like "afs,example.com,1000555", combining the filesystem name, cell name and volume ID. This is freeform, but must not have '/' chars in it. I've also eliminated all pointers back from fscache into the network filesystem. This required the duplication of a little bit of data in the cookie (cookie key, coherency data and file size), but it's not actually that much. This gets rid of problems with making sure we keep netfs data structures around so that the cache can access them. These patches mean that most of the code that was in the drivers before is simply gone and those drivers are now almost entirely new code. That being the case, there doesn't seem any particular reason to try and maintain bisectability across it. Further, there has to be a point in the middle where things are cut over as there's a single point everything has to go through (ie. /dev/cachefiles) and it can't be in use by two drivers at once. ISSUES YET OUTSTANDING ====================== There are some issues still outstanding, unaddressed by this patchset, that will need fixing in future patchsets, but that don't stop this series from being usable: (1) The cachefiles driver needs to stop using the backing filesystem's metadata to store information about what parts of the cache are populated. This is not reliable with modern extent-based filesystems. Fixing this is deferred to a separate patchset as it involves negotiation with the network filesystem and the VM as to how much data to download to fulfil a read - which brings me on to (2)... (2) NFS (and CIFS with the dropped patch) do not take account of how the cache would like I/O to be structured to meet its granularity requirements. Previously, the cache used page granularity, which was fine as the network filesystems also dealt in page granularity, and the backing filesystem (ext4, xfs or whatever) did whatever it did out of sight. However, we now have folios to deal with and the cache will now have to store its own metadata to track its contents. The change I'm looking at making for cachefiles is to store content bitmaps in one or more xattrs and making a bit in the map correspond to something like a 256KiB block. However, the size of an xattr and the fact that they have to be read/updated in one go means that I'm looking at covering 1GiB of data per 512-byte map and storing each map in an xattr. Cachefiles has the potential to grow into a fully fledged filesystem of its very own if I'm not careful. However, I'm also looking at changing things even more radically and going to a different model of how the cache is arranged and managed - one that's more akin to the way, say, openafs does things - which brings me on to (3)... (3) The way cachefilesd does culling is very inefficient for large caches and it would be better to move it into the kernel if I can as cachefilesd has to keep asking the kernel if it can cull a file. Changing the way the backend works would allow this to be addressed. BITS THAT MAY BE CONTROVERSIAL ============================== There are some bits I've added that may be controversial: (1) I've provided a flag, S_KERNEL_FILE, that cachefiles uses to check if a files is already being used by some other kernel service (e.g. a duplicate cachefiles cache in the same directory) and reject it if it is. This isn't entirely necessary, but it helps prevent accidental data corruption. I don't want to use S_SWAPFILE as that has other effects, but quite possibly swapon() should set S_KERNEL_FILE too. Note that it doesn't prevent userspace from interfering, though perhaps it should. (I have made it prevent a marked directory from being rmdir-able). (2) Cachefiles wants to keep the backing file for a cookie open whilst we might need to write to it from network filesystem writeback. The problem is that the network filesystem unuses its cookie when its file is closed, and so we have nothing pinning the cachefiles file open and it will get closed automatically after a short time to avoid EMFILE/ENFILE problems. Reopening the cache file, however, is a problem if this is being done due to writeback triggered by exit(). Some filesystems will oops if we try to open a file in that context because they want to access current->fs or suchlike. To get around this, I added the following: (A) An inode flag, I_PINNING_FSCACHE_WB, to be set on a network filesystem inode to indicate that we have a usage count on the cookie caching that inode. (B) A flag in struct writeback_control, unpinned_fscache_wb, that is set when __writeback_single_inode() clears the last dirty page from i_pages - at which point it clears I_PINNING_FSCACHE_WB and sets this flag. This has to be done here so that clearing I_PINNING_FSCACHE_WB can be done atomically with the check of PAGECACHE_TAG_DIRTY that clears I_DIRTY_PAGES. (C) A function, fscache_set_page_dirty(), which if it is not set, sets I_PINNING_FSCACHE_WB and calls fscache_use_cookie() to pin the cache resources. (D) A function, fscache_unpin_writeback(), to be called by ->write_inode() to unuse the cookie. (E) A function, fscache_clear_inode_writeback(), to be called when the inode is evicted, before clear_inode() is called. This cleans up any lingering I_PINNING_FSCACHE_WB. The network filesystem can then use these tools to make sure that fscache_write_to_cache() can write locally modified data to the cache as well as to the server. For the future, I'm working on write helpers for netfs lib that should allow this facility to be removed by keeping track of the dirty regions separately - but that's incomplete at the moment and is also going to be affected by folios, one way or another, since it deals with pages" Link: https://lore.kernel.org/all/[email protected]/ Tested-by: Dominique Martinet <[email protected]> # 9p Tested-by: [email protected] # afs Tested-by: Jeff Layton <[email protected]> # ceph Tested-by: Dave Wysochanski <[email protected]> # nfs Tested-by: Daire Byrne <[email protected]> # nfs * tag 'fscache-rewrite-20220111' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: (67 commits) 9p, afs, ceph, nfs: Use current_is_kswapd() rather than gfpflags_allow_blocking() fscache: Add a tracepoint for cookie use/unuse fscache: Rewrite documentation ceph: add fscache writeback support ceph: conversion to new fscache API nfs: Implement cache I/O by accessing the cache directly nfs: Convert to new fscache volume/cookie API 9p: Copy local writes to the cache when writing to the server 9p: Use fscache indexing rewrite and reenable caching afs: Skip truncation on the server of data we haven't written yet afs: Copy local writes to the cache when writing to the server afs: Convert afs to use the new fscache API fscache, cachefiles: Display stat of culling events fscache, cachefiles: Display stats of no-space events cachefiles: Allow cachefiles to actually function fscache, cachefiles: Store the volume coherency data cachefiles: Implement the I/O routines cachefiles: Implement cookie resize for truncate cachefiles: Implement begin and end I/O operation cachefiles: Implement backing file wrangling ...
Diffstat (limited to 'fs/fscache/object.c')
-rw-r--r--fs/fscache/object.c1125
1 files changed, 0 insertions, 1125 deletions
diff --git a/fs/fscache/object.c b/fs/fscache/object.c
deleted file mode 100644
index 6a675652129b..000000000000
--- a/fs/fscache/object.c
+++ /dev/null
@@ -1,1125 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/* FS-Cache object state machine handler
- *
- * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
- * Written by David Howells ([email protected])
- *
- * See Documentation/filesystems/caching/object.rst for a description of the
- * object state machine and the in-kernel representations.
- */
-
-#define FSCACHE_DEBUG_LEVEL COOKIE
-#include <linux/module.h>
-#include <linux/slab.h>
-#include <linux/prefetch.h>
-#include "internal.h"
-
-static const struct fscache_state *fscache_abort_initialisation(struct fscache_object *, int);
-static const struct fscache_state *fscache_kill_dependents(struct fscache_object *, int);
-static const struct fscache_state *fscache_drop_object(struct fscache_object *, int);
-static const struct fscache_state *fscache_initialise_object(struct fscache_object *, int);
-static const struct fscache_state *fscache_invalidate_object(struct fscache_object *, int);
-static const struct fscache_state *fscache_jumpstart_dependents(struct fscache_object *, int);
-static const struct fscache_state *fscache_kill_object(struct fscache_object *, int);
-static const struct fscache_state *fscache_lookup_failure(struct fscache_object *, int);
-static const struct fscache_state *fscache_look_up_object(struct fscache_object *, int);
-static const struct fscache_state *fscache_object_available(struct fscache_object *, int);
-static const struct fscache_state *fscache_parent_ready(struct fscache_object *, int);
-static const struct fscache_state *fscache_update_object(struct fscache_object *, int);
-static const struct fscache_state *fscache_object_dead(struct fscache_object *, int);
-
-#define __STATE_NAME(n) fscache_osm_##n
-#define STATE(n) (&__STATE_NAME(n))
-
-/*
- * Define a work state. Work states are execution states. No event processing
- * is performed by them. The function attached to a work state returns a
- * pointer indicating the next state to which the state machine should
- * transition. Returning NO_TRANSIT repeats the current state, but goes back
- * to the scheduler first.
- */
-#define WORK_STATE(n, sn, f) \
- const struct fscache_state __STATE_NAME(n) = { \
- .name = #n, \
- .short_name = sn, \
- .work = f \
- }
-
-/*
- * Returns from work states.
- */
-#define transit_to(state) ({ prefetch(&STATE(state)->work); STATE(state); })
-
-#define NO_TRANSIT ((struct fscache_state *)NULL)
-
-/*
- * Define a wait state. Wait states are event processing states. No execution
- * is performed by them. Wait states are just tables of "if event X occurs,
- * clear it and transition to state Y". The dispatcher returns to the
- * scheduler if none of the events in which the wait state has an interest are
- * currently pending.
- */
-#define WAIT_STATE(n, sn, ...) \
- const struct fscache_state __STATE_NAME(n) = { \
- .name = #n, \
- .short_name = sn, \
- .work = NULL, \
- .transitions = { __VA_ARGS__, { 0, NULL } } \
- }
-
-#define TRANSIT_TO(state, emask) \
- { .events = (emask), .transit_to = STATE(state) }
-
-/*
- * The object state machine.
- */
-static WORK_STATE(INIT_OBJECT, "INIT", fscache_initialise_object);
-static WORK_STATE(PARENT_READY, "PRDY", fscache_parent_ready);
-static WORK_STATE(ABORT_INIT, "ABRT", fscache_abort_initialisation);
-static WORK_STATE(LOOK_UP_OBJECT, "LOOK", fscache_look_up_object);
-static WORK_STATE(OBJECT_AVAILABLE, "AVBL", fscache_object_available);
-static WORK_STATE(JUMPSTART_DEPS, "JUMP", fscache_jumpstart_dependents);
-
-static WORK_STATE(INVALIDATE_OBJECT, "INVL", fscache_invalidate_object);
-static WORK_STATE(UPDATE_OBJECT, "UPDT", fscache_update_object);
-
-static WORK_STATE(LOOKUP_FAILURE, "LCFL", fscache_lookup_failure);
-static WORK_STATE(KILL_OBJECT, "KILL", fscache_kill_object);
-static WORK_STATE(KILL_DEPENDENTS, "KDEP", fscache_kill_dependents);
-static WORK_STATE(DROP_OBJECT, "DROP", fscache_drop_object);
-static WORK_STATE(OBJECT_DEAD, "DEAD", fscache_object_dead);
-
-static WAIT_STATE(WAIT_FOR_INIT, "?INI",
- TRANSIT_TO(INIT_OBJECT, 1 << FSCACHE_OBJECT_EV_NEW_CHILD));
-
-static WAIT_STATE(WAIT_FOR_PARENT, "?PRN",
- TRANSIT_TO(PARENT_READY, 1 << FSCACHE_OBJECT_EV_PARENT_READY));
-
-static WAIT_STATE(WAIT_FOR_CMD, "?CMD",
- TRANSIT_TO(INVALIDATE_OBJECT, 1 << FSCACHE_OBJECT_EV_INVALIDATE),
- TRANSIT_TO(UPDATE_OBJECT, 1 << FSCACHE_OBJECT_EV_UPDATE),
- TRANSIT_TO(JUMPSTART_DEPS, 1 << FSCACHE_OBJECT_EV_NEW_CHILD));
-
-static WAIT_STATE(WAIT_FOR_CLEARANCE, "?CLR",
- TRANSIT_TO(KILL_OBJECT, 1 << FSCACHE_OBJECT_EV_CLEARED));
-
-/*
- * Out-of-band event transition tables. These are for handling unexpected
- * events, such as an I/O error. If an OOB event occurs, the state machine
- * clears and disables the event and forces a transition to the nominated work
- * state (acurrently executing work states will complete first).
- *
- * In such a situation, object->state remembers the state the machine should
- * have been in/gone to and returning NO_TRANSIT returns to that.
- */
-static const struct fscache_transition fscache_osm_init_oob[] = {
- TRANSIT_TO(ABORT_INIT,
- (1 << FSCACHE_OBJECT_EV_ERROR) |
- (1 << FSCACHE_OBJECT_EV_KILL)),
- { 0, NULL }
-};
-
-static const struct fscache_transition fscache_osm_lookup_oob[] = {
- TRANSIT_TO(LOOKUP_FAILURE,
- (1 << FSCACHE_OBJECT_EV_ERROR) |
- (1 << FSCACHE_OBJECT_EV_KILL)),
- { 0, NULL }
-};
-
-static const struct fscache_transition fscache_osm_run_oob[] = {
- TRANSIT_TO(KILL_OBJECT,
- (1 << FSCACHE_OBJECT_EV_ERROR) |
- (1 << FSCACHE_OBJECT_EV_KILL)),
- { 0, NULL }
-};
-
-static int fscache_get_object(struct fscache_object *,
- enum fscache_obj_ref_trace);
-static void fscache_put_object(struct fscache_object *,
- enum fscache_obj_ref_trace);
-static bool fscache_enqueue_dependents(struct fscache_object *, int);
-static void fscache_dequeue_object(struct fscache_object *);
-static void fscache_update_aux_data(struct fscache_object *);
-
-/*
- * we need to notify the parent when an op completes that we had outstanding
- * upon it
- */
-static inline void fscache_done_parent_op(struct fscache_object *object)
-{
- struct fscache_object *parent = object->parent;
-
- _enter("OBJ%x {OBJ%x,%x}",
- object->debug_id, parent->debug_id, parent->n_ops);
-
- spin_lock_nested(&parent->lock, 1);
- parent->n_obj_ops--;
- parent->n_ops--;
- if (parent->n_ops == 0)
- fscache_raise_event(parent, FSCACHE_OBJECT_EV_CLEARED);
- spin_unlock(&parent->lock);
-}
-
-/*
- * Object state machine dispatcher.
- */
-static void fscache_object_sm_dispatcher(struct fscache_object *object)
-{
- const struct fscache_transition *t;
- const struct fscache_state *state, *new_state;
- unsigned long events, event_mask;
- bool oob;
- int event = -1;
-
- ASSERT(object != NULL);
-
- _enter("{OBJ%x,%s,%lx}",
- object->debug_id, object->state->name, object->events);
-
- event_mask = object->event_mask;
-restart:
- object->event_mask = 0; /* Mask normal event handling */
- state = object->state;
-restart_masked:
- events = object->events;
-
- /* Handle any out-of-band events (typically an error) */
- if (events & object->oob_event_mask) {
- _debug("{OBJ%x} oob %lx",
- object->debug_id, events & object->oob_event_mask);
- oob = true;
- for (t = object->oob_table; t->events; t++) {
- if (events & t->events) {
- state = t->transit_to;
- ASSERT(state->work != NULL);
- event = fls(events & t->events) - 1;
- __clear_bit(event, &object->oob_event_mask);
- clear_bit(event, &object->events);
- goto execute_work_state;
- }
- }
- }
- oob = false;
-
- /* Wait states are just transition tables */
- if (!state->work) {
- if (events & event_mask) {
- for (t = state->transitions; t->events; t++) {
- if (events & t->events) {
- new_state = t->transit_to;
- event = fls(events & t->events) - 1;
- trace_fscache_osm(object, state,
- true, false, event);
- clear_bit(event, &object->events);
- _debug("{OBJ%x} ev %d: %s -> %s",
- object->debug_id, event,
- state->name, new_state->name);
- object->state = state = new_state;
- goto execute_work_state;
- }
- }
-
- /* The event mask didn't include all the tabled bits */
- BUG();
- }
- /* Randomly woke up */
- goto unmask_events;
- }
-
-execute_work_state:
- _debug("{OBJ%x} exec %s", object->debug_id, state->name);
-
- trace_fscache_osm(object, state, false, oob, event);
- new_state = state->work(object, event);
- event = -1;
- if (new_state == NO_TRANSIT) {
- _debug("{OBJ%x} %s notrans", object->debug_id, state->name);
- if (unlikely(state == STATE(OBJECT_DEAD))) {
- _leave(" [dead]");
- return;
- }
- fscache_enqueue_object(object);
- event_mask = object->oob_event_mask;
- goto unmask_events;
- }
-
- _debug("{OBJ%x} %s -> %s",
- object->debug_id, state->name, new_state->name);
- object->state = state = new_state;
-
- if (state->work) {
- if (unlikely(state == STATE(OBJECT_DEAD))) {
- _leave(" [dead]");
- return;
- }
- goto restart_masked;
- }
-
- /* Transited to wait state */
- event_mask = object->oob_event_mask;
- for (t = state->transitions; t->events; t++)
- event_mask |= t->events;
-
-unmask_events:
- object->event_mask = event_mask;
- smp_mb();
- events = object->events;
- if (events & event_mask)
- goto restart;
- _leave(" [msk %lx]", event_mask);
-}
-
-/*
- * execute an object
- */
-static void fscache_object_work_func(struct work_struct *work)
-{
- struct fscache_object *object =
- container_of(work, struct fscache_object, work);
-
- _enter("{OBJ%x}", object->debug_id);
-
- fscache_object_sm_dispatcher(object);
- fscache_put_object(object, fscache_obj_put_work);
-}
-
-/**
- * fscache_object_init - Initialise a cache object description
- * @object: Object description
- * @cookie: Cookie object will be attached to
- * @cache: Cache in which backing object will be found
- *
- * Initialise a cache object description to its basic values.
- *
- * See Documentation/filesystems/caching/backend-api.rst for a complete
- * description.
- */
-void fscache_object_init(struct fscache_object *object,
- struct fscache_cookie *cookie,
- struct fscache_cache *cache)
-{
- const struct fscache_transition *t;
-
- atomic_inc(&cache->object_count);
-
- object->state = STATE(WAIT_FOR_INIT);
- object->oob_table = fscache_osm_init_oob;
- object->flags = 1 << FSCACHE_OBJECT_IS_LIVE;
- spin_lock_init(&object->lock);
- INIT_LIST_HEAD(&object->cache_link);
- INIT_HLIST_NODE(&object->cookie_link);
- INIT_WORK(&object->work, fscache_object_work_func);
- INIT_LIST_HEAD(&object->dependents);
- INIT_LIST_HEAD(&object->dep_link);
- INIT_LIST_HEAD(&object->pending_ops);
- object->n_children = 0;
- object->n_ops = object->n_in_progress = object->n_exclusive = 0;
- object->events = 0;
- object->store_limit = 0;
- object->store_limit_l = 0;
- object->cache = cache;
- object->cookie = cookie;
- fscache_cookie_get(cookie, fscache_cookie_get_attach_object);
- object->parent = NULL;
-#ifdef CONFIG_FSCACHE_OBJECT_LIST
- RB_CLEAR_NODE(&object->objlist_link);
-#endif
-
- object->oob_event_mask = 0;
- for (t = object->oob_table; t->events; t++)
- object->oob_event_mask |= t->events;
- object->event_mask = object->oob_event_mask;
- for (t = object->state->transitions; t->events; t++)
- object->event_mask |= t->events;
-}
-EXPORT_SYMBOL(fscache_object_init);
-
-/*
- * Mark the object as no longer being live, making sure that we synchronise
- * against op submission.
- */
-static inline void fscache_mark_object_dead(struct fscache_object *object)
-{
- spin_lock(&object->lock);
- clear_bit(FSCACHE_OBJECT_IS_LIVE, &object->flags);
- spin_unlock(&object->lock);
-}
-
-/*
- * Abort object initialisation before we start it.
- */
-static const struct fscache_state *fscache_abort_initialisation(struct fscache_object *object,
- int event)
-{
- _enter("{OBJ%x},%d", object->debug_id, event);
-
- object->oob_event_mask = 0;
- fscache_dequeue_object(object);
- return transit_to(KILL_OBJECT);
-}
-
-/*
- * initialise an object
- * - check the specified object's parent to see if we can make use of it
- * immediately to do a creation
- * - we may need to start the process of creating a parent and we need to wait
- * for the parent's lookup and creation to complete if it's not there yet
- */
-static const struct fscache_state *fscache_initialise_object(struct fscache_object *object,
- int event)
-{
- struct fscache_object *parent;
- bool success;
-
- _enter("{OBJ%x},%d", object->debug_id, event);
-
- ASSERT(list_empty(&object->dep_link));
-
- parent = object->parent;
- if (!parent) {
- _leave(" [no parent]");
- return transit_to(DROP_OBJECT);
- }
-
- _debug("parent: %s of:%lx", parent->state->name, parent->flags);
-
- if (fscache_object_is_dying(parent)) {
- _leave(" [bad parent]");
- return transit_to(DROP_OBJECT);
- }
-
- if (fscache_object_is_available(parent)) {
- _leave(" [ready]");
- return transit_to(PARENT_READY);
- }
-
- _debug("wait");
-
- spin_lock(&parent->lock);
- fscache_stat(&fscache_n_cop_grab_object);
- success = false;
- if (fscache_object_is_live(parent) &&
- object->cache->ops->grab_object(object, fscache_obj_get_add_to_deps)) {
- list_add(&object->dep_link, &parent->dependents);
- success = true;
- }
- fscache_stat_d(&fscache_n_cop_grab_object);
- spin_unlock(&parent->lock);
- if (!success) {
- _leave(" [grab failed]");
- return transit_to(DROP_OBJECT);
- }
-
- /* fscache_acquire_non_index_cookie() uses this
- * to wake the chain up */
- fscache_raise_event(parent, FSCACHE_OBJECT_EV_NEW_CHILD);
- _leave(" [wait]");
- return transit_to(WAIT_FOR_PARENT);
-}
-
-/*
- * Once the parent object is ready, we should kick off our lookup op.
- */
-static const struct fscache_state *fscache_parent_ready(struct fscache_object *object,
- int event)
-{
- struct fscache_object *parent = object->parent;
-
- _enter("{OBJ%x},%d", object->debug_id, event);
-
- ASSERT(parent != NULL);
-
- spin_lock(&parent->lock);
- parent->n_ops++;
- parent->n_obj_ops++;
- spin_unlock(&parent->lock);
-
- _leave("");
- return transit_to(LOOK_UP_OBJECT);
-}
-
-/*
- * look an object up in the cache from which it was allocated
- * - we hold an "access lock" on the parent object, so the parent object cannot
- * be withdrawn by either party till we've finished
- */
-static const struct fscache_state *fscache_look_up_object(struct fscache_object *object,
- int event)
-{
- struct fscache_cookie *cookie = object->cookie;
- struct fscache_object *parent = object->parent;
- int ret;
-
- _enter("{OBJ%x},%d", object->debug_id, event);
-
- object->oob_table = fscache_osm_lookup_oob;
-
- ASSERT(parent != NULL);
- ASSERTCMP(parent->n_ops, >, 0);
- ASSERTCMP(parent->n_obj_ops, >, 0);
-
- /* make sure the parent is still available */
- ASSERT(fscache_object_is_available(parent));
-
- if (fscache_object_is_dying(parent) ||
- test_bit(FSCACHE_IOERROR, &object->cache->flags) ||
- !fscache_use_cookie(object)) {
- _leave(" [unavailable]");
- return transit_to(LOOKUP_FAILURE);
- }
-
- _debug("LOOKUP \"%s\" in \"%s\"",
- cookie->def->name, object->cache->tag->name);
-
- fscache_stat(&fscache_n_object_lookups);
- fscache_stat(&fscache_n_cop_lookup_object);
- ret = object->cache->ops->lookup_object(object);
- fscache_stat_d(&fscache_n_cop_lookup_object);
-
- fscache_unuse_cookie(object);
-
- if (ret == -ETIMEDOUT) {
- /* probably stuck behind another object, so move this one to
- * the back of the queue */
- fscache_stat(&fscache_n_object_lookups_timed_out);
- _leave(" [timeout]");
- return NO_TRANSIT;
- }
-
- if (ret < 0) {
- _leave(" [error]");
- return transit_to(LOOKUP_FAILURE);
- }
-
- _leave(" [ok]");
- return transit_to(OBJECT_AVAILABLE);
-}
-
-/**
- * fscache_object_lookup_negative - Note negative cookie lookup
- * @object: Object pointing to cookie to mark
- *
- * Note negative lookup, permitting those waiting to read data from an already
- * existing backing object to continue as there's no data for them to read.
- */
-void fscache_object_lookup_negative(struct fscache_object *object)
-{
- struct fscache_cookie *cookie = object->cookie;
-
- _enter("{OBJ%x,%s}", object->debug_id, object->state->name);
-
- if (!test_and_set_bit(FSCACHE_OBJECT_IS_LOOKED_UP, &object->flags)) {
- fscache_stat(&fscache_n_object_lookups_negative);
-
- /* Allow write requests to begin stacking up and read requests to begin
- * returning ENODATA.
- */
- set_bit(FSCACHE_COOKIE_NO_DATA_YET, &cookie->flags);
- clear_bit(FSCACHE_COOKIE_UNAVAILABLE, &cookie->flags);
-
- clear_bit_unlock(FSCACHE_COOKIE_LOOKING_UP, &cookie->flags);
- wake_up_bit(&cookie->flags, FSCACHE_COOKIE_LOOKING_UP);
- }
- _leave("");
-}
-EXPORT_SYMBOL(fscache_object_lookup_negative);
-
-/**
- * fscache_obtained_object - Note successful object lookup or creation
- * @object: Object pointing to cookie to mark
- *
- * Note successful lookup and/or creation, permitting those waiting to write
- * data to a backing object to continue.
- *
- * Note that after calling this, an object's cookie may be relinquished by the
- * netfs, and so must be accessed with object lock held.
- */
-void fscache_obtained_object(struct fscache_object *object)
-{
- struct fscache_cookie *cookie = object->cookie;
-
- _enter("{OBJ%x,%s}", object->debug_id, object->state->name);
-
- /* if we were still looking up, then we must have a positive lookup
- * result, in which case there may be data available */
- if (!test_and_set_bit(FSCACHE_OBJECT_IS_LOOKED_UP, &object->flags)) {
- fscache_stat(&fscache_n_object_lookups_positive);
-
- /* We do (presumably) have data */
- clear_bit_unlock(FSCACHE_COOKIE_NO_DATA_YET, &cookie->flags);
- clear_bit(FSCACHE_COOKIE_UNAVAILABLE, &cookie->flags);
-
- /* Allow write requests to begin stacking up and read requests
- * to begin shovelling data.
- */
- clear_bit_unlock(FSCACHE_COOKIE_LOOKING_UP, &cookie->flags);
- wake_up_bit(&cookie->flags, FSCACHE_COOKIE_LOOKING_UP);
- } else {
- fscache_stat(&fscache_n_object_created);
- }
-
- set_bit(FSCACHE_OBJECT_IS_AVAILABLE, &object->flags);
- _leave("");
-}
-EXPORT_SYMBOL(fscache_obtained_object);
-
-/*
- * handle an object that has just become available
- */
-static const struct fscache_state *fscache_object_available(struct fscache_object *object,
- int event)
-{
- _enter("{OBJ%x},%d", object->debug_id, event);
-
- object->oob_table = fscache_osm_run_oob;
-
- spin_lock(&object->lock);
-
- fscache_done_parent_op(object);
- if (object->n_in_progress == 0) {
- if (object->n_ops > 0) {
- ASSERTCMP(object->n_ops, >=, object->n_obj_ops);
- fscache_start_operations(object);
- } else {
- ASSERT(list_empty(&object->pending_ops));
- }
- }
- spin_unlock(&object->lock);
-
- fscache_stat(&fscache_n_cop_lookup_complete);
- object->cache->ops->lookup_complete(object);
- fscache_stat_d(&fscache_n_cop_lookup_complete);
-
- fscache_stat(&fscache_n_object_avail);
-
- _leave("");
- return transit_to(JUMPSTART_DEPS);
-}
-
-/*
- * Wake up this object's dependent objects now that we've become available.
- */
-static const struct fscache_state *fscache_jumpstart_dependents(struct fscache_object *object,
- int event)
-{
- _enter("{OBJ%x},%d", object->debug_id, event);
-
- if (!fscache_enqueue_dependents(object, FSCACHE_OBJECT_EV_PARENT_READY))
- return NO_TRANSIT; /* Not finished; requeue */
- return transit_to(WAIT_FOR_CMD);
-}
-
-/*
- * Handle lookup or creation failute.
- */
-static const struct fscache_state *fscache_lookup_failure(struct fscache_object *object,
- int event)
-{
- struct fscache_cookie *cookie;
-
- _enter("{OBJ%x},%d", object->debug_id, event);
-
- object->oob_event_mask = 0;
-
- fscache_stat(&fscache_n_cop_lookup_complete);
- object->cache->ops->lookup_complete(object);
- fscache_stat_d(&fscache_n_cop_lookup_complete);
-
- set_bit(FSCACHE_OBJECT_KILLED_BY_CACHE, &object->flags);
-
- cookie = object->cookie;
- set_bit(FSCACHE_COOKIE_UNAVAILABLE, &cookie->flags);
- if (test_and_clear_bit(FSCACHE_COOKIE_LOOKING_UP, &cookie->flags))
- wake_up_bit(&cookie->flags, FSCACHE_COOKIE_LOOKING_UP);
-
- fscache_done_parent_op(object);
- return transit_to(KILL_OBJECT);
-}
-
-/*
- * Wait for completion of all active operations on this object and the death of
- * all child objects of this object.
- */
-static const struct fscache_state *fscache_kill_object(struct fscache_object *object,
- int event)
-{
- _enter("{OBJ%x,%d,%d},%d",
- object->debug_id, object->n_ops, object->n_children, event);
-
- fscache_mark_object_dead(object);
- object->oob_event_mask = 0;
-
- if (test_bit(FSCACHE_OBJECT_RETIRED, &object->flags)) {
- /* Reject any new read/write ops and abort any that are pending. */
- clear_bit(FSCACHE_OBJECT_PENDING_WRITE, &object->flags);
- fscache_cancel_all_ops(object);
- }
-
- if (list_empty(&object->dependents) &&
- object->n_ops == 0 &&
- object->n_children == 0)
- return transit_to(DROP_OBJECT);
-
- if (object->n_in_progress == 0) {
- spin_lock(&object->lock);
- if (object->n_ops > 0 && object->n_in_progress == 0)
- fscache_start_operations(object);
- spin_unlock(&object->lock);
- }
-
- if (!list_empty(&object->dependents))
- return transit_to(KILL_DEPENDENTS);
-
- return transit_to(WAIT_FOR_CLEARANCE);
-}
-
-/*
- * Kill dependent objects.
- */
-static const struct fscache_state *fscache_kill_dependents(struct fscache_object *object,
- int event)
-{
- _enter("{OBJ%x},%d", object->debug_id, event);
-
- if (!fscache_enqueue_dependents(object, FSCACHE_OBJECT_EV_KILL))
- return NO_TRANSIT; /* Not finished */
- return transit_to(WAIT_FOR_CLEARANCE);
-}
-
-/*
- * Drop an object's attachments
- */
-static const struct fscache_state *fscache_drop_object(struct fscache_object *object,
- int event)
-{
- struct fscache_object *parent = object->parent;
- struct fscache_cookie *cookie = object->cookie;
- struct fscache_cache *cache = object->cache;
- bool awaken = false;
-
- _enter("{OBJ%x,%d},%d", object->debug_id, object->n_children, event);
-
- ASSERT(cookie != NULL);
- ASSERT(!hlist_unhashed(&object->cookie_link));
-
- if (test_bit(FSCACHE_COOKIE_AUX_UPDATED, &cookie->flags)) {
- _debug("final update");
- fscache_update_aux_data(object);
- }
-
- /* Make sure the cookie no longer points here and that the netfs isn't
- * waiting for us.
- */
- spin_lock(&cookie->lock);
- hlist_del_init(&object->cookie_link);
- if (hlist_empty(&cookie->backing_objects) &&
- test_and_clear_bit(FSCACHE_COOKIE_INVALIDATING, &cookie->flags))
- awaken = true;
- spin_unlock(&cookie->lock);
-
- if (awaken)
- wake_up_bit(&cookie->flags, FSCACHE_COOKIE_INVALIDATING);
- if (test_and_clear_bit(FSCACHE_COOKIE_LOOKING_UP, &cookie->flags))
- wake_up_bit(&cookie->flags, FSCACHE_COOKIE_LOOKING_UP);
-
-
- /* Prevent a race with our last child, which has to signal EV_CLEARED
- * before dropping our spinlock.
- */
- spin_lock(&object->lock);
- spin_unlock(&object->lock);
-
- /* Discard from the cache's collection of objects */
- spin_lock(&cache->object_list_lock);
- list_del_init(&object->cache_link);
- spin_unlock(&cache->object_list_lock);
-
- fscache_stat(&fscache_n_cop_drop_object);
- cache->ops->drop_object(object);
- fscache_stat_d(&fscache_n_cop_drop_object);
-
- /* The parent object wants to know when all it dependents have gone */
- if (parent) {
- _debug("release parent OBJ%x {%d}",
- parent->debug_id, parent->n_children);
-
- spin_lock(&parent->lock);
- parent->n_children--;
- if (parent->n_children == 0)
- fscache_raise_event(parent, FSCACHE_OBJECT_EV_CLEARED);
- spin_unlock(&parent->lock);
- object->parent = NULL;
- }
-
- /* this just shifts the object release to the work processor */
- fscache_put_object(object, fscache_obj_put_drop_obj);
- fscache_stat(&fscache_n_object_dead);
-
- _leave("");
- return transit_to(OBJECT_DEAD);
-}
-
-/*
- * get a ref on an object
- */
-static int fscache_get_object(struct fscache_object *object,
- enum fscache_obj_ref_trace why)
-{
- int ret;
-
- fscache_stat(&fscache_n_cop_grab_object);
- ret = object->cache->ops->grab_object(object, why) ? 0 : -EAGAIN;
- fscache_stat_d(&fscache_n_cop_grab_object);
- return ret;
-}
-
-/*
- * Discard a ref on an object
- */
-static void fscache_put_object(struct fscache_object *object,
- enum fscache_obj_ref_trace why)
-{
- fscache_stat(&fscache_n_cop_put_object);
- object->cache->ops->put_object(object, why);
- fscache_stat_d(&fscache_n_cop_put_object);
-}
-
-/**
- * fscache_object_destroy - Note that a cache object is about to be destroyed
- * @object: The object to be destroyed
- *
- * Note the imminent destruction and deallocation of a cache object record.
- */
-void fscache_object_destroy(struct fscache_object *object)
-{
- /* We can get rid of the cookie now */
- fscache_cookie_put(object->cookie, fscache_cookie_put_object);
- object->cookie = NULL;
-}
-EXPORT_SYMBOL(fscache_object_destroy);
-
-/*
- * enqueue an object for metadata-type processing
- */
-void fscache_enqueue_object(struct fscache_object *object)
-{
- _enter("{OBJ%x}", object->debug_id);
-
- if (fscache_get_object(object, fscache_obj_get_queue) >= 0) {
- wait_queue_head_t *cong_wq =
- &get_cpu_var(fscache_object_cong_wait);
-
- if (queue_work(fscache_object_wq, &object->work)) {
- if (fscache_object_congested())
- wake_up(cong_wq);
- } else
- fscache_put_object(object, fscache_obj_put_queue);
-
- put_cpu_var(fscache_object_cong_wait);
- }
-}
-
-/**
- * fscache_object_sleep_till_congested - Sleep until object wq is congested
- * @timeoutp: Scheduler sleep timeout
- *
- * Allow an object handler to sleep until the object workqueue is congested.
- *
- * The caller must set up a wake up event before calling this and must have set
- * the appropriate sleep mode (such as TASK_UNINTERRUPTIBLE) and tested its own
- * condition before calling this function as no test is made here.
- *
- * %true is returned if the object wq is congested, %false otherwise.
- */
-bool fscache_object_sleep_till_congested(signed long *timeoutp)
-{
- wait_queue_head_t *cong_wq = this_cpu_ptr(&fscache_object_cong_wait);
- DEFINE_WAIT(wait);
-
- if (fscache_object_congested())
- return true;
-
- add_wait_queue_exclusive(cong_wq, &wait);
- if (!fscache_object_congested())
- *timeoutp = schedule_timeout(*timeoutp);
- finish_wait(cong_wq, &wait);
-
- return fscache_object_congested();
-}
-EXPORT_SYMBOL_GPL(fscache_object_sleep_till_congested);
-
-/*
- * Enqueue the dependents of an object for metadata-type processing.
- *
- * If we don't manage to finish the list before the scheduler wants to run
- * again then return false immediately. We return true if the list was
- * cleared.
- */
-static bool fscache_enqueue_dependents(struct fscache_object *object, int event)
-{
- struct fscache_object *dep;
- bool ret = true;
-
- _enter("{OBJ%x}", object->debug_id);
-
- if (list_empty(&object->dependents))
- return true;
-
- spin_lock(&object->lock);
-
- while (!list_empty(&object->dependents)) {
- dep = list_entry(object->dependents.next,
- struct fscache_object, dep_link);
- list_del_init(&dep->dep_link);
-
- fscache_raise_event(dep, event);
- fscache_put_object(dep, fscache_obj_put_enq_dep);
-
- if (!list_empty(&object->dependents) && need_resched()) {
- ret = false;
- break;
- }
- }
-
- spin_unlock(&object->lock);
- return ret;
-}
-
-/*
- * remove an object from whatever queue it's waiting on
- */
-static void fscache_dequeue_object(struct fscache_object *object)
-{
- _enter("{OBJ%x}", object->debug_id);
-
- if (!list_empty(&object->dep_link)) {
- spin_lock(&object->parent->lock);
- list_del_init(&object->dep_link);
- spin_unlock(&object->parent->lock);
- }
-
- _leave("");
-}
-
-/**
- * fscache_check_aux - Ask the netfs whether an object on disk is still valid
- * @object: The object to ask about
- * @data: The auxiliary data for the object
- * @datalen: The size of the auxiliary data
- * @object_size: The size of the object according to the server.
- *
- * This function consults the netfs about the coherency state of an object.
- * The caller must be holding a ref on cookie->n_active (held by
- * fscache_look_up_object() on behalf of the cache backend during object lookup
- * and creation).
- */
-enum fscache_checkaux fscache_check_aux(struct fscache_object *object,
- const void *data, uint16_t datalen,
- loff_t object_size)
-{
- enum fscache_checkaux result;
-
- if (!object->cookie->def->check_aux) {
- fscache_stat(&fscache_n_checkaux_none);
- return FSCACHE_CHECKAUX_OKAY;
- }
-
- result = object->cookie->def->check_aux(object->cookie->netfs_data,
- data, datalen, object_size);
- switch (result) {
- /* entry okay as is */
- case FSCACHE_CHECKAUX_OKAY:
- fscache_stat(&fscache_n_checkaux_okay);
- break;
-
- /* entry requires update */
- case FSCACHE_CHECKAUX_NEEDS_UPDATE:
- fscache_stat(&fscache_n_checkaux_update);
- break;
-
- /* entry requires deletion */
- case FSCACHE_CHECKAUX_OBSOLETE:
- fscache_stat(&fscache_n_checkaux_obsolete);
- break;
-
- default:
- BUG();
- }
-
- return result;
-}
-EXPORT_SYMBOL(fscache_check_aux);
-
-/*
- * Asynchronously invalidate an object.
- */
-static const struct fscache_state *_fscache_invalidate_object(struct fscache_object *object,
- int event)
-{
- struct fscache_operation *op;
- struct fscache_cookie *cookie = object->cookie;
-
- _enter("{OBJ%x},%d", object->debug_id, event);
-
- /* We're going to need the cookie. If the cookie is not available then
- * retire the object instead.
- */
- if (!fscache_use_cookie(object)) {
- ASSERT(radix_tree_empty(&object->cookie->stores));
- set_bit(FSCACHE_OBJECT_RETIRED, &object->flags);
- _leave(" [no cookie]");
- return transit_to(KILL_OBJECT);
- }
-
- /* Reject any new read/write ops and abort any that are pending. */
- fscache_invalidate_writes(cookie);
- clear_bit(FSCACHE_OBJECT_PENDING_WRITE, &object->flags);
- fscache_cancel_all_ops(object);
-
- /* Now we have to wait for in-progress reads and writes */
- op = kzalloc(sizeof(*op), GFP_KERNEL);
- if (!op)
- goto nomem;
-
- fscache_operation_init(cookie, op, object->cache->ops->invalidate_object,
- NULL, NULL);
- op->flags = FSCACHE_OP_ASYNC |
- (1 << FSCACHE_OP_EXCLUSIVE) |
- (1 << FSCACHE_OP_UNUSE_COOKIE);
- trace_fscache_page_op(cookie, NULL, op, fscache_page_op_invalidate);
-
- spin_lock(&cookie->lock);
- if (fscache_submit_exclusive_op(object, op) < 0)
- goto submit_op_failed;
- spin_unlock(&cookie->lock);
- fscache_put_operation(op);
-
- /* Once we've completed the invalidation, we know there will be no data
- * stored in the cache and thus we can reinstate the data-check-skip
- * optimisation.
- */
- set_bit(FSCACHE_COOKIE_NO_DATA_YET, &cookie->flags);
-
- /* We can allow read and write requests to come in once again. They'll
- * queue up behind our exclusive invalidation operation.
- */
- if (test_and_clear_bit(FSCACHE_COOKIE_INVALIDATING, &cookie->flags))
- wake_up_bit(&cookie->flags, FSCACHE_COOKIE_INVALIDATING);
- _leave(" [ok]");
- return transit_to(UPDATE_OBJECT);
-
-nomem:
- fscache_mark_object_dead(object);
- fscache_unuse_cookie(object);
- _leave(" [ENOMEM]");
- return transit_to(KILL_OBJECT);
-
-submit_op_failed:
- fscache_mark_object_dead(object);
- spin_unlock(&cookie->lock);
- fscache_unuse_cookie(object);
- kfree(op);
- _leave(" [EIO]");
- return transit_to(KILL_OBJECT);
-}
-
-static const struct fscache_state *fscache_invalidate_object(struct fscache_object *object,
- int event)
-{
- const struct fscache_state *s;
-
- fscache_stat(&fscache_n_invalidates_run);
- fscache_stat(&fscache_n_cop_invalidate_object);
- s = _fscache_invalidate_object(object, event);
- fscache_stat_d(&fscache_n_cop_invalidate_object);
- return s;
-}
-
-/*
- * Update auxiliary data.
- */
-static void fscache_update_aux_data(struct fscache_object *object)
-{
- fscache_stat(&fscache_n_updates_run);
- fscache_stat(&fscache_n_cop_update_object);
- object->cache->ops->update_object(object);
- fscache_stat_d(&fscache_n_cop_update_object);
-}
-
-/*
- * Asynchronously update an object.
- */
-static const struct fscache_state *fscache_update_object(struct fscache_object *object,
- int event)
-{
- _enter("{OBJ%x},%d", object->debug_id, event);
-
- fscache_update_aux_data(object);
-
- _leave("");
- return transit_to(WAIT_FOR_CMD);
-}
-
-/**
- * fscache_object_retrying_stale - Note retrying stale object
- * @object: The object that will be retried
- *
- * Note that an object lookup found an on-disk object that was adjudged to be
- * stale and has been deleted. The lookup will be retried.
- */
-void fscache_object_retrying_stale(struct fscache_object *object)
-{
- fscache_stat(&fscache_n_cache_no_space_reject);
-}
-EXPORT_SYMBOL(fscache_object_retrying_stale);
-
-/**
- * fscache_object_mark_killed - Note that an object was killed
- * @object: The object that was culled
- * @why: The reason the object was killed.
- *
- * Note that an object was killed. Returns true if the object was
- * already marked killed, false if it wasn't.
- */
-void fscache_object_mark_killed(struct fscache_object *object,
- enum fscache_why_object_killed why)
-{
- if (test_and_set_bit(FSCACHE_OBJECT_KILLED_BY_CACHE, &object->flags)) {
- pr_err("Error: Object already killed by cache [%s]\n",
- object->cache->identifier);
- return;
- }
-
- switch (why) {
- case FSCACHE_OBJECT_NO_SPACE:
- fscache_stat(&fscache_n_cache_no_space_reject);
- break;
- case FSCACHE_OBJECT_IS_STALE:
- fscache_stat(&fscache_n_cache_stale_objects);
- break;
- case FSCACHE_OBJECT_WAS_RETIRED:
- fscache_stat(&fscache_n_cache_retired_objects);
- break;
- case FSCACHE_OBJECT_WAS_CULLED:
- fscache_stat(&fscache_n_cache_culled_objects);
- break;
- }
-}
-EXPORT_SYMBOL(fscache_object_mark_killed);
-
-/*
- * The object is dead. We can get here if an object gets queued by an event
- * that would lead to its death (such as EV_KILL) when the dispatcher is
- * already running (and so can be requeued) but hasn't yet cleared the event
- * mask.
- */
-static const struct fscache_state *fscache_object_dead(struct fscache_object *object,
- int event)
-{
- if (!test_and_set_bit(FSCACHE_OBJECT_RUN_AFTER_DEAD,
- &object->flags))
- return NO_TRANSIT;
-
- WARN(true, "FS-Cache object redispatched after death");
- return NO_TRANSIT;
-}