diff options
author | David Shaw <[email protected]> | 2002-06-29 13:31:13 +0000 |
---|---|---|
committer | David Shaw <[email protected]> | 2002-06-29 13:31:13 +0000 |
commit | 151ee2f47bfdaa1273cdfd4855e937fb8f2e1d06 (patch) | |
tree | de5bf8049ec1b28b2948ba85542c0a269084a696 /cipher/rsa.c | |
parent | Removed files for CVS reorganization (diff) | |
download | gnupg-151ee2f47bfdaa1273cdfd4855e937fb8f2e1d06.tar.gz gnupg-151ee2f47bfdaa1273cdfd4855e937fb8f2e1d06.zip |
Update head to match stable 1.0
Diffstat (limited to 'cipher/rsa.c')
-rw-r--r-- | cipher/rsa.c | 494 |
1 files changed, 494 insertions, 0 deletions
diff --git a/cipher/rsa.c b/cipher/rsa.c new file mode 100644 index 000000000..e438b39cf --- /dev/null +++ b/cipher/rsa.c @@ -0,0 +1,494 @@ +/* rsa.c - RSA function + * Copyright (C) 1997, 1998, 1999 by Werner Koch (dd9jn) + * Copyright (C) 2000, 2001 Free Software Foundation, Inc. + * + * This file is part of GnuPG. + * + * GnuPG is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * GnuPG is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA + */ + +/* This code uses an algorithm protected by U.S. Patent #4,405,829 + which expires on September 20, 2000. The patent holder placed that + patent into the public domain on Sep 6th, 2000. +*/ + +#include <config.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include "util.h" +#include "mpi.h" +#include "cipher.h" +#include "rsa.h" + + +typedef struct { + MPI n; /* modulus */ + MPI e; /* exponent */ +} RSA_public_key; + + +typedef struct { + MPI n; /* public modulus */ + MPI e; /* public exponent */ + MPI d; /* exponent */ + MPI p; /* prime p. */ + MPI q; /* prime q. */ + MPI u; /* inverse of p mod q. */ +} RSA_secret_key; + + +static void test_keys( RSA_secret_key *sk, unsigned nbits ); +static void generate( RSA_secret_key *sk, unsigned nbits ); +static int check_secret_key( RSA_secret_key *sk ); +static void public(MPI output, MPI input, RSA_public_key *skey ); +static void secret(MPI output, MPI input, RSA_secret_key *skey ); + + +static void +test_keys( RSA_secret_key *sk, unsigned nbits ) +{ + RSA_public_key pk; + MPI test = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB ); + MPI out1 = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB ); + MPI out2 = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB ); + + pk.n = sk->n; + pk.e = sk->e; + { char *p = get_random_bits( nbits, 0, 0 ); + mpi_set_buffer( test, p, (nbits+7)/8, 0 ); + m_free(p); + } + + public( out1, test, &pk ); + secret( out2, out1, sk ); + if( mpi_cmp( test, out2 ) ) + log_fatal("RSA operation: public, secret failed\n"); + secret( out1, test, sk ); + public( out2, out1, &pk ); + if( mpi_cmp( test, out2 ) ) + log_fatal("RSA operation: secret, public failed\n"); + mpi_free( test ); + mpi_free( out1 ); + mpi_free( out2 ); +} + +/**************** + * Generate a key pair with a key of size NBITS + * Returns: 2 structures filled with all needed values + */ +static void +generate( RSA_secret_key *sk, unsigned nbits ) +{ + MPI p, q; /* the two primes */ + MPI d; /* the private key */ + MPI u; + MPI t1, t2; + MPI n; /* the public key */ + MPI e; /* the exponent */ + MPI phi; /* helper: (p-1)(q-1) */ + MPI g; + MPI f; + + /* make sure that nbits is even so that we generate p, q of equal size */ + if ( (nbits&1) ) + nbits++; + + n = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB ); + + p = q = NULL; + do { + /* select two (very secret) primes */ + if (p) + mpi_free (p); + if (q) + mpi_free (q); + p = generate_secret_prime( nbits / 2 ); + q = generate_secret_prime( nbits / 2 ); + if( mpi_cmp( p, q ) > 0 ) /* p shall be smaller than q (for calc of u)*/ + mpi_swap(p,q); + /* calculate the modulus */ + mpi_mul( n, p, q ); + } while ( mpi_get_nbits(n) != nbits ); + + /* calculate Euler totient: phi = (p-1)(q-1) */ + t1 = mpi_alloc_secure( mpi_get_nlimbs(p) ); + t2 = mpi_alloc_secure( mpi_get_nlimbs(p) ); + phi = mpi_alloc_secure( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB ); + g = mpi_alloc_secure( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB ); + f = mpi_alloc_secure( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB ); + mpi_sub_ui( t1, p, 1 ); + mpi_sub_ui( t2, q, 1 ); + mpi_mul( phi, t1, t2 ); + mpi_gcd(g, t1, t2); + mpi_fdiv_q(f, phi, g); + + /* find an public exponent. + We use 41 as this is quite fast and more secure than the + commonly used 17. Benchmarking the RSA verify function + with a 1024 bit key yields (2001-11-08): + e=17 0.54 ms + e=41 0.75 ms + e=257 0.95 ms + e=65537 1.80 ms + */ + e = mpi_alloc( (32+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB ); + mpi_set_ui( e, 41); + if( !mpi_gcd(t1, e, phi) ) { + mpi_set_ui( e, 257); + if( !mpi_gcd(t1, e, phi) ) { + mpi_set_ui( e, 65537); + while( !mpi_gcd(t1, e, phi) ) /* (while gcd is not 1) */ + mpi_add_ui( e, e, 2); + } + } + + /* calculate the secret key d = e^1 mod phi */ + d = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB ); + mpi_invm(d, e, f ); + /* calculate the inverse of p and q (used for chinese remainder theorem)*/ + u = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB ); + mpi_invm(u, p, q ); + + if( DBG_CIPHER ) { + log_mpidump(" p= ", p ); + log_mpidump(" q= ", q ); + log_mpidump("phi= ", phi ); + log_mpidump(" g= ", g ); + log_mpidump(" f= ", f ); + log_mpidump(" n= ", n ); + log_mpidump(" e= ", e ); + log_mpidump(" d= ", d ); + log_mpidump(" u= ", u ); + } + + mpi_free(t1); + mpi_free(t2); + mpi_free(phi); + mpi_free(f); + mpi_free(g); + + sk->n = n; + sk->e = e; + sk->p = p; + sk->q = q; + sk->d = d; + sk->u = u; + + /* now we can test our keys (this should never fail!) */ + test_keys( sk, nbits - 64 ); +} + + +/**************** + * Test wether the secret key is valid. + * Returns: true if this is a valid key. + */ +static int +check_secret_key( RSA_secret_key *sk ) +{ + int rc; + MPI temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 ); + + mpi_mul(temp, sk->p, sk->q ); + rc = mpi_cmp( temp, sk->n ); + mpi_free(temp); + return !rc; +} + + + +/**************** + * Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT. + * + * c = m^e mod n + * + * Where c is OUTPUT, m is INPUT and e,n are elements of PKEY. + */ +static void +public(MPI output, MPI input, RSA_public_key *pkey ) +{ + if( output == input ) { /* powm doesn't like output and input the same */ + MPI x = mpi_alloc( mpi_get_nlimbs(input)*2 ); + mpi_powm( x, input, pkey->e, pkey->n ); + mpi_set(output, x); + mpi_free(x); + } + else + mpi_powm( output, input, pkey->e, pkey->n ); +} + +#if 0 +static void +stronger_key_check ( RSA_secret_key *skey ) +{ + MPI t = mpi_alloc_secure ( 0 ); + MPI t1 = mpi_alloc_secure ( 0 ); + MPI t2 = mpi_alloc_secure ( 0 ); + MPI phi = mpi_alloc_secure ( 0 ); + + /* check that n == p * q */ + mpi_mul( t, skey->p, skey->q); + if (mpi_cmp( t, skey->n) ) + log_info ( "RSA Oops: n != p * q\n" ); + + /* check that p is less than q */ + if( mpi_cmp( skey->p, skey->q ) > 0 ) + log_info ("RSA Oops: p >= q\n"); + + + /* check that e divides neither p-1 nor q-1 */ + mpi_sub_ui(t, skey->p, 1 ); + mpi_fdiv_r(t, t, skey->e ); + if ( !mpi_cmp_ui( t, 0) ) + log_info ( "RSA Oops: e divides p-1\n" ); + mpi_sub_ui(t, skey->q, 1 ); + mpi_fdiv_r(t, t, skey->e ); + if ( !mpi_cmp_ui( t, 0) ) + log_info ( "RSA Oops: e divides q-1\n" ); + + /* check that d is correct */ + mpi_sub_ui( t1, skey->p, 1 ); + mpi_sub_ui( t2, skey->q, 1 ); + mpi_mul( phi, t1, t2 ); + mpi_gcd(t, t1, t2); + mpi_fdiv_q(t, phi, t); + mpi_invm(t, skey->e, t ); + if ( mpi_cmp(t, skey->d ) ) + log_info ( "RSA Oops: d is wrong\n"); + + /* check for crrectness of u */ + mpi_invm(t, skey->p, skey->q ); + if ( mpi_cmp(t, skey->u ) ) + log_info ( "RSA Oops: u is wrong\n"); + + log_info ( "RSA secret key check finished\n"); + + mpi_free (t); + mpi_free (t1); + mpi_free (t2); + mpi_free (phi); +} +#endif + + +/**************** + * Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT. + * + * m = c^d mod n + * + * Or faster: + * + * m1 = c ^ (d mod (p-1)) mod p + * m2 = c ^ (d mod (q-1)) mod q + * h = u * (m2 - m1) mod q + * m = m1 + h * p + * + * Where m is OUTPUT, c is INPUT and d,n,p,q,u are elements of SKEY. + */ +static void +secret(MPI output, MPI input, RSA_secret_key *skey ) +{ + #if 0 + mpi_powm( output, input, skey->d, skey->n ); + #else + MPI m1 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 ); + MPI m2 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 ); + MPI h = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 ); + + /* m1 = c ^ (d mod (p-1)) mod p */ + mpi_sub_ui( h, skey->p, 1 ); + mpi_fdiv_r( h, skey->d, h ); + mpi_powm( m1, input, h, skey->p ); + /* m2 = c ^ (d mod (q-1)) mod q */ + mpi_sub_ui( h, skey->q, 1 ); + mpi_fdiv_r( h, skey->d, h ); + mpi_powm( m2, input, h, skey->q ); + /* h = u * ( m2 - m1 ) mod q */ + mpi_sub( h, m2, m1 ); + if ( mpi_is_neg( h ) ) + mpi_add ( h, h, skey->q ); + mpi_mulm( h, skey->u, h, skey->q ); + /* m = m2 + h * p */ + mpi_mul ( h, h, skey->p ); + mpi_add ( output, m1, h ); + /* ready */ + + mpi_free ( h ); + mpi_free ( m1 ); + mpi_free ( m2 ); + #endif +} + + +/********************************************* + ************** interface ****************** + *********************************************/ + +int +rsa_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors ) +{ + RSA_secret_key sk; + + if( !is_RSA(algo) ) + return G10ERR_PUBKEY_ALGO; + + generate( &sk, nbits ); + skey[0] = sk.n; + skey[1] = sk.e; + skey[2] = sk.d; + skey[3] = sk.p; + skey[4] = sk.q; + skey[5] = sk.u; + /* make an empty list of factors */ + *retfactors = m_alloc_clear( 1 * sizeof **retfactors ); + return 0; +} + + +int +rsa_check_secret_key( int algo, MPI *skey ) +{ + RSA_secret_key sk; + + if( !is_RSA(algo) ) + return G10ERR_PUBKEY_ALGO; + + sk.n = skey[0]; + sk.e = skey[1]; + sk.d = skey[2]; + sk.p = skey[3]; + sk.q = skey[4]; + sk.u = skey[5]; + if( !check_secret_key( &sk ) ) + return G10ERR_BAD_SECKEY; + + return 0; +} + + + +int +rsa_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey ) +{ + RSA_public_key pk; + + if( algo != 1 && algo != 2 ) + return G10ERR_PUBKEY_ALGO; + + pk.n = pkey[0]; + pk.e = pkey[1]; + resarr[0] = mpi_alloc( mpi_get_nlimbs( pk.n ) ); + public( resarr[0], data, &pk ); + return 0; +} + +int +rsa_decrypt( int algo, MPI *result, MPI *data, MPI *skey ) +{ + RSA_secret_key sk; + + if( algo != 1 && algo != 2 ) + return G10ERR_PUBKEY_ALGO; + + sk.n = skey[0]; + sk.e = skey[1]; + sk.d = skey[2]; + sk.p = skey[3]; + sk.q = skey[4]; + sk.u = skey[5]; + *result = mpi_alloc_secure( mpi_get_nlimbs( sk.n ) ); + secret( *result, data[0], &sk ); + return 0; +} + +int +rsa_sign( int algo, MPI *resarr, MPI data, MPI *skey ) +{ + RSA_secret_key sk; + + if( algo != 1 && algo != 3 ) + return G10ERR_PUBKEY_ALGO; + + sk.n = skey[0]; + sk.e = skey[1]; + sk.d = skey[2]; + sk.p = skey[3]; + sk.q = skey[4]; + sk.u = skey[5]; + resarr[0] = mpi_alloc( mpi_get_nlimbs( sk.n ) ); + secret( resarr[0], data, &sk ); + + return 0; +} + +int +rsa_verify( int algo, MPI hash, MPI *data, MPI *pkey, + int (*cmp)(void *opaque, MPI tmp), void *opaquev ) +{ + RSA_public_key pk; + MPI result; + int rc; + + if( algo != 1 && algo != 3 ) + return G10ERR_PUBKEY_ALGO; + pk.n = pkey[0]; + pk.e = pkey[1]; + result = mpi_alloc( (160+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB); + public( result, data[0], &pk ); + /*rc = (*cmp)( opaquev, result );*/ + rc = mpi_cmp( result, hash )? G10ERR_BAD_SIGN:0; + mpi_free(result); + + return rc; +} + + +unsigned int +rsa_get_nbits( int algo, MPI *pkey ) +{ + if( !is_RSA(algo) ) + return 0; + return mpi_get_nbits( pkey[0] ); +} + + +/**************** + * Return some information about the algorithm. We need algo here to + * distinguish different flavors of the algorithm. + * Returns: A pointer to string describing the algorithm or NULL if + * the ALGO is invalid. + * Usage: Bit 0 set : allows signing + * 1 set : allows encryption + */ +const char * +rsa_get_info( int algo, + int *npkey, int *nskey, int *nenc, int *nsig, int *r_usage ) +{ + *npkey = 2; + *nskey = 6; + *nenc = 1; + *nsig = 1; + + switch( algo ) { + case 1: *r_usage = PUBKEY_USAGE_SIG | PUBKEY_USAGE_ENC; return "RSA"; + case 2: *r_usage = PUBKEY_USAGE_ENC; return "RSA-E"; + case 3: *r_usage = PUBKEY_USAGE_SIG; return "RSA-S"; + default:*r_usage = 0; return NULL; + } +} + + + |