1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
|
/**
* AES encryption/decryption demo program using OpenSSL EVP apis
* gcc -Wall openssl_aes.c -lcrypto
* this is public domain code.
* Saju Pillai ([email protected])
**/
#include "aes_ssl.h"
namespace GpgFrontend::RawAPI {
/**
* @brief Create a 256 bit key and IV using the supplied key_data. salt can be
* added for taste. Fills in the encryption and decryption ctx objects and
* returns 0 on success
*
* @param key_data
* @param key_data_len
* @param salt
* @param e_ctx
* @param d_ctx
* @return int
*/
int aes_256_cbc_init(uint8_t *key_data, int key_data_len, uint8_t *salt,
EVP_CIPHER_CTX *e_ctx, EVP_CIPHER_CTX *d_ctx) {
int i, nrounds = 5;
uint8_t key[32], iv[32];
/*
* Gen key & IV for AES 256 CBC mode. A SHA1 digest is used to hash the
* supplied key material. nrounds is the number of times the we hash the
* material. More rounds are more secure but slower.
*/
i = EVP_BytesToKey(EVP_aes_256_cbc(), EVP_sha1(), salt, key_data,
key_data_len, nrounds, key, iv);
if (i != 32) {
printf("Key size is %d bits - should be 256 bits\n", i);
return -1;
}
EVP_CIPHER_CTX_init(e_ctx);
EVP_EncryptInit_ex(e_ctx, EVP_aes_256_cbc(), NULL, key, iv);
EVP_CIPHER_CTX_init(d_ctx);
EVP_DecryptInit_ex(d_ctx, EVP_aes_256_cbc(), NULL, key, iv);
return 0;
}
/**
* @brief Encrypt *len bytes of data All data going in & out is considered
* binary (uint8_t[])
*
* @param e
* @param plaintext
* @param len
* @return uint8_t*
*/
uint8_t *aes_256_cbc_encrypt(EVP_CIPHER_CTX *e, uint8_t *plaintext, int *len) {
/* max ciphertext len for a n bytes of plaintext is n + AES_BLOCK_SIZE -1
* bytes */
int c_len = *len + AES_BLOCK_SIZE, f_len = 0;
auto *ciphertext = (uint8_t *)malloc(c_len);
/* allows reusing of 'e' for multiple encryption cycles */
EVP_EncryptInit_ex(e, nullptr, nullptr, nullptr, nullptr);
/* update ciphertext, c_len is filled with the length of ciphertext generated,
*len is the size of plaintext in bytes */
EVP_EncryptUpdate(e, ciphertext, &c_len, plaintext, *len);
/* update ciphertext with the final remaining bytes */
EVP_EncryptFinal_ex(e, ciphertext + c_len, &f_len);
*len = c_len + f_len;
return ciphertext;
}
/**
* @brief Decrypt *len bytes of ciphertext
*
* @param e
* @param ciphertext
* @param len
* @return uint8_t*
*/
uint8_t *aes_256_cbc_decrypt(EVP_CIPHER_CTX *e, uint8_t *ciphertext, int *len) {
/* plaintext will always be equal to or lesser than length of ciphertext*/
int p_len = *len, f_len = 0;
auto *plaintext = (uint8_t *)malloc(p_len);
EVP_DecryptInit_ex(e, nullptr, nullptr, nullptr, nullptr);
EVP_DecryptUpdate(e, plaintext, &p_len, ciphertext, *len);
EVP_DecryptFinal_ex(e, plaintext + p_len, &f_len);
*len = p_len + f_len;
return plaintext;
}
} // namespace GpgFrontend::RawAPI
|