gpgme/lang/python/docs/GPGMEpythonHOWTOen.org
Ben McGinnes d04fb0bf12 Python bindings: docs
* lang/python/docs/GPGMEpythonHOWTOen.org: Fixed a few errors in the
  newer sections.
* Updated code in the examples using secret key exporting and group
  lines to reflect the Python 2.7 compatibility fixes added.
2018-09-16 03:36:14 +10:00

2081 lines
65 KiB
Org Mode

#+TITLE: GNU Privacy Guard (GnuPG) Made Easy Python Bindings HOWTO (English)
#+AUTHOR: Ben McGinnes
#+LATEX_COMPILER: xelatex
#+LATEX_CLASS: article
#+LATEX_CLASS_OPTIONS: [12pt]
#+LATEX_HEADER: \usepackage{xltxtra}
#+LATEX_HEADER: \usepackage[margin=1in]{geometry}
#+LATEX_HEADER: \setmainfont[Ligatures={Common}]{Times New Roman}
#+LATEX_HEADER: \author{Ben McGinnes <ben@gnupg.org>}
#+HTML_HEAD_EXTRA: <link type="application/rss+xml" href="https://git.gnupg.org/cgi-bin/gitweb.cgi?p=gpgme.git;a=rss;f=lang/python/docs/GPGMEpythonHOWTOen.org"/>
* Introduction
:PROPERTIES:
:CUSTOM_ID: intro
:END:
| Version: | 0.1.4 |
| Author: | Ben McGinnes <ben@gnupg.org> |
| Author GPG Key: | DB4724E6FA4286C92B4E55C4321E4E2373590E5D |
| Language: | Australian English, British English |
| xml:lang: | en-AU, en-GB, en |
This document provides basic instruction in how to use the GPGME
Python bindings to programmatically leverage the GPGME library.
** Python 2 versus Python 3
:PROPERTIES:
:CUSTOM_ID: py2-vs-py3
:END:
Though the GPGME Python bindings themselves provide support for both
Python 2 and 3, the focus is unequivocally on Python 3 and
specifically from Python 3.4 and above. As a consequence all the
examples and instructions in this guide use Python 3 code.
Much of it will work with Python 2, but much of it also deals with
Python 3 byte literals, particularly when reading and writing data.
Developers concentrating on Python 2.7, and possibly even 2.6, will
need to make the appropriate modifications to support the older string
and unicode types as opposed to bytes.
There are multiple reasons for concentrating on Python 3; some of
which relate to the immediate integration of these bindings, some of
which relate to longer term plans for both GPGME and the python
bindings and some of which relate to the impending EOL period for
Python 2.7. Essentially, though, there is little value in tying the
bindings to a version of the language which is a dead end and the
advantages offered by Python 3 over Python 2 make handling the data
types with which GPGME deals considerably easier.
** Examples
:PROPERTIES:
:CUSTOM_ID: howto-python3-examples
:END:
All of the examples found in this document can be found as Python 3
scripts in the =lang/python/examples/howto= directory.
* GPGME Concepts
:PROPERTIES:
:CUSTOM_ID: gpgme-concepts
:END:
** A C API
:PROPERTIES:
:CUSTOM_ID: gpgme-c-api
:END:
Unlike many modern APIs with which programmers will be more familiar
with these days, the GPGME API is a C API. The API is intended for
use by C coders who would be able to access its features by including
the =gpgme.h= header file with their own C source code and then access
its functions just as they would any other C headers.
This is a very effective method of gaining complete access to the API
and in the most efficient manner possible. It does, however, have the
drawback that it cannot be directly used by other languages without
some means of providing an interface to those languages. This is
where the need for bindings in various languages stems.
** Python bindings
:PROPERTIES:
:CUSTOM_ID: gpgme-python-bindings
:END:
The Python bindings for GPGME provide a higher level means of
accessing the complete feature set of GPGME itself. It also provides
a more pythonic means of calling these API functions.
The bindings are generated dynamically with SWIG and the copy of
=gpgme.h= generated when GPGME is compiled.
This means that a version of the Python bindings is fundamentally tied
to the exact same version of GPGME used to generate that copy of
=gpgme.h=.
** Difference between the Python bindings and other GnuPG Python packages
:PROPERTIES:
:CUSTOM_ID: gpgme-python-bindings-diffs
:END:
There have been numerous attempts to add GnuPG support to Python over
the years. Some of the most well known are listed here, along with
what differentiates them.
*** The python-gnupg package maintained by Vinay Sajip
:PROPERTIES:
:CUSTOM_ID: diffs-python-gnupg
:END:
This is arguably the most popular means of integrating GPG with
Python. The package utilises the =subprocess= module to implement
wrappers for the =gpg= and =gpg2= executables normally invoked on the
command line (=gpg.exe= and =gpg2.exe= on Windows).
The popularity of this package stemmed from its ease of use and
capability in providing the most commonly required features.
Unfortunately it has been beset by a number of security issues in the
past; most of which stemmed from using unsafe methods of accessing the
command line via the =subprocess= calls. While some effort has been
made over the last two to three years (as of 2018) to mitigate this,
particularly by no longer providing shell access through those
subprocess calls, the wrapper is still somewhat limited in the scope
of its GnuPG features coverage.
The python-gnupg package is available under the MIT license.
*** The gnupg package created and maintained by Isis Lovecruft
:PROPERTIES:
:CUSTOM_ID: diffs-isis-gnupg
:END:
In 2015 Isis Lovecruft from the Tor Project forked and then
re-implemented the python-gnupg package as just gnupg. This new
package also relied on subprocess to call the =gpg= or =gpg2=
binaries, but did so somewhat more securely.
The naming and version numbering selected for this package, however,
resulted in conflicts with the original python-gnupg and since its
functions were called in a different manner to python-gnupg, the
release of this package also resulted in a great deal of consternation
when people installed what they thought was an upgrade that
subsequently broke the code relying on it.
The gnupg package is available under the GNU General Public License
version 3.0 (or any later version).
*** The PyME package maintained by Martin Albrecht
:PROPERTIES:
:CUSTOM_ID: diffs-pyme
:END:
This package is the origin of these bindings, though they are somewhat
different now. For details of when and how the PyME package was
folded back into GPGME itself see the /Short History/ document[fn:1]
in the Python bindings =docs= directory.[fn:2]
The PyME package was first released in 2002 and was also the first
attempt to implement a low level binding to GPGME. In doing so it
provided access to considerably more functionality than either the
=python-gnupg= or =gnupg= packages.
The PyME package is only available for Python 2.6 and 2.7.
Porting the PyME package to Python 3.4 in 2015 is what resulted in it
being folded into the GPGME project and the current bindings are the
end result of that effort.
The PyME package is available under the same dual licensing as GPGME
itself: the GNU General Public License version 2.0 (or any later
version) and the GNU Lesser General Public License version 2.1 (or any
later version).
* GPGME Python bindings installation
:PROPERTIES:
:CUSTOM_ID: gpgme-python-install
:END:
** No PyPI
:PROPERTIES:
:CUSTOM_ID: do-not-use-pypi
:END:
Most third-party Python packages and modules are available and
distributed through the Python Package Installer, known as PyPI.
Due to the nature of what these bindings are and how they work, it is
infeasible to install the GPGME Python bindings in the same way.
This is because the bindings use SWIG to dynamically generate C
bindings against =gpgme.h= and =gpgme.h= is generated from
=gpgme.h.in= at compile time when GPGME is built from source. Thus to
include a package in PyPI which actually built correctly would require
either statically built libraries for every architecture bundled with
it or a full implementation of C for each architecture.
See the additional notes regarding [[#snafu-cffi][CFFI and SWIG]] at the end of this
section for further details.
** Requirements
:PROPERTIES:
:CUSTOM_ID: gpgme-python-requirements
:END:
The GPGME Python bindings only have three requirements:
1. A suitable version of Python 2 or Python 3. With Python 2 that
means Python 2.7 and with Python 3 that means Python 3.4 or higher.
2. [[https://www.swig.org][SWIG]].
3. GPGME itself. Which also means that all of GPGME's dependencies
must be installed too.
** Installation
:PROPERTIES:
:CUSTOM_ID: installation
:END:
Installing the Python bindings is effectively achieved by compiling
and installing GPGME itself.
Once SWIG is installed with Python and all the dependencies for GPGME
are installed you only need to confirm that the version(s) of Python
you want the bindings installed for are in your =$PATH=.
By default GPGME will attempt to install the bindings for the most
recent or highest version number of Python 2 and Python 3 it detects
in =$PATH=. It specifically checks for the =python= and =python3=
executables first and then checks for specific version numbers.
For Python 2 it checks for these executables in this order: =python=,
=python2= and =python2.7=.
For Python 3 it checks for these executables in this order: =python3=,
=python3.6=, =python3.5=, =python3.4= and =python3.7=.[fn:3]
*** Installing GPGME
:PROPERTIES:
:CUSTOM_ID: install-gpgme
:END:
See the GPGME =README= file for details of how to install GPGME from
source.
** Known Issues
:PROPERTIES:
:CUSTOM_ID: snafu
:END:
There are a few known issues with the current build process and the
Python bindings. For the most part these are easily addressed should
they be encountered.
*** Breaking Builds
:PROPERTIES:
:CUSTOM_ID: snafu-a-swig-of-this-builds-character
:END:
Occasionally when installing GPGME with the Python bindings included
it may be observed that the =make= portion of that process induces a
large very number of warnings and, eventually errors which end that
part of the build process. Yet following that with =make check= and
=make install= appears to work seamlessly.
The cause of this is related to the way SWIG needs to be called to
dynamically generate the C bindings for GPGME in the first place. So
the entire process will always produce =lang/python/python2-gpg/= and
=lang/python/python3-gpg/= directories. These should contain the
build output generated during compilation, including the complete
bindings and module installed into =site-packages=.
Occasionally the errors in the early part or some other conflict
(e.g. not installing as */root/* or */su/*) may result in nothing
being installed to the relevant =site-packages= directory and the
build directory missing a lot of expected files. Even when this
occurs, the solution is actually quite simple and will always work.
That solution is simply to run the following commands as either the
*root* user or prepended with =sudo -H=[fn:4] in the =lang/python/=
directory:
#+BEGIN_SRC shell
/path/to/pythonX.Y setup.py build
/path/to/pythonX.Y setup.py build
/path/to/pythonX.Y setup.py install
#+END_SRC
Yes, the build command does need to be run twice. Yes, you still need
to run the potentially failing or incomplete steps during the
=configure=, =make= and =make install= steps with installing GPGME.
This is because those steps generate a lot of essential files needed,
both by and in order to create, the bindings (including both the
=setup.py= and =gpgme.h= files).
**** IMPORTANT Note
:PROPERTIES:
:CUSTOM_ID: snafu-swig-build-note
:END:
If specifying a selected number of languages to create bindings for,
try to leave Python last. Currently the majority of the other
language bindings are also preceding Python of either version when
listed alphabetically and so that just happens by default currently.
If Python is set to precede one of the other languages then it is
possible that the errors described here may interrupt the build
process before generating bindings for those other languages. In
these cases it may be preferable to configure all preferred language
bindings separately with alternative =configure= steps for GPGME using
the =--enable-languages=$LANGUAGE= option.
*** Multiple installations
:PROPERTIES:
:CUSTOM_ID: snafu-the-full-monty
:END:
For a veriety of reasons it may be either necessary or just preferable
to install the bindings to alternative installed Python versions which
meet the requirements of these bindings.
On POSIX systems this will generally be most simply achieved by
running the manual installation commands (build, build, install) as
described in the previous section for each Python installation the
bindings need to be installed to.
As per the SWIG documentation: the compilers, libraries and runtime
used to build GPGME and the Python Bindings *must* match those used to
compile Python itself, including the version number(s) (at least going
by major version numbers and probably minor numbers too).
On most POSIX systems, including OS X, this will very likely be the
case in most, if not all, cases.
*** Won't Work With Windows
:PROPERTIES:
:CUSTOM_ID: snafu-runtime-not-funtime
:END:
There are semi-regular reports of Windows users having considerable
difficulty in installing and using the Python bindings at all. Very
often, possibly even always, these reports come from Cygwin users
and/or MinGW users and/or Msys2 users. Though not all of them have
been confirmed, it appears that these reports have also come from
people who installed Python using the Windows installer files from the
[[https://python.org][Python website]] (i.e. mostly MSI installers, sometimes self-extracting
=.exe= files).
The Windows versions of Python are not built using Cygwin, MinGW or
Msys2; they're built using Microsoft Visual Studio. Furthermore the
version used is /considerably/ more advanced than the version which
MinGW obtained a small number of files from many years ago in order to
be able to compile anything at all. Not only that, but there are
changes to the version of Visual Studio between some micro releases,
though that is is particularly the case with Python 2.7, since it has
been kept around far longer than it should have been.
There are two theoretical solutions to this issue:
1. Compile and install the GnuPG stack, including GPGME and the
Python bibdings using the same version of Microsoft Visual Studio
used by the Python Foundation to compile the version of Python
installed.
If there are multiple versions of Python then this will need to be
done with each different version of Visual Studio used.
2. Compile and install Python using the same tools used by choice,
such as MinGW or Msys2.
Do *not* use the official Windows installer for Python unless
following the first method.
In this type of situation it may even be for the best to accept that
there are less limitations on permissive software than free software
and simply opt to use a recent version of the Community Edition of
Microsoft Visual Studio to compile and build all of it, no matter
what.
Investigations into the extent or the limitations of this issue are
ongoing.
*** I don't like SWIG, Use CFFI instead
:PROPERTIES:
:CUSTOM_ID: snafu-cffi
:END:
There are many reasons for favouring [[https://cffi.readthedocs.io/en/latest/overview.html][CFFI]] and proponents of it are
quite happy to repeat these things as if all it would take to switch
from SWIG to CFFI is repeating that list as if it were a new concept.
The fact is that there are things which Python's CFFI implementation
cannot handle in the GPGME C code. Beyond that there are features of
SWIG which are simply not available with CFFI at all. SWIG generates
the bindings to Python using the =gpgme.h= file, but that file is not
a single version shipped with each release, it too is generated when
GPGME is compiled.
CFFI is currently unable to adapt to such a potentially mutable
codebase. If there were some means of applying SWIG's dynamic code
generation to produce the Python/CFFI API modes of accessing the GPGME
libraries (or the source source code directly), but such a thing does
not exist yet either and it currently appears that work is needed in
at least one of CFFI's dependencies before any of this can be
addressed.
So if you're a massive fan of CFFI; that's great, but if you want this
project to switch to CFFI then rather than just insisting that it
should, I'd suggest you volunteer to bring CFFI up to the level this
project needs.
If you're actually seriously considering doing so, then I'd suggest
taking the =gpgme-tool.c= file in the GPGME =src/= directory and
getting that to work with any of the CFFI API methods (not the ABI
methods, they'll work with pretty much anything). When you start
running into trouble with "ifdefs" then you'll know what sort of
things are lacking. That doesn't even take into account the amount of
work saved via SWIG's code generation techniques either.
* Fundamentals
:PROPERTIES:
:CUSTOM_ID: howto-fund-a-mental
:END:
Before we can get to the fun stuff, there are a few matters regarding
GPGME's design which hold true whether you're dealing with the C code
directly or these Python bindings.
** No REST
:PROPERTIES:
:CUSTOM_ID: no-rest-for-the-wicked
:END:
The first part of which is or will be fairly blatantly obvious upon
viewing the first example, but it's worth reiterating anyway. That
being that this API is /*not*/ a REST API. Nor indeed could it ever
be one.
Most, if not all, Python programmers (and not just Python programmers)
know how easy it is to work with a RESTful API. In fact they've
become so popular that many other APIs attempt to emulate REST-like
behaviour as much as they are able. Right down to the use of JSON
formatted output to facilitate the use of their API without having to
retrain developers.
This API does not do that. It would not be able to do that and also
provide access to the entire C API on which it's built. It does,
however, provide a very pythonic interface on top of the direct
bindings and it's this pythonic layer that this HOWTO deals with.
** Context
:PROPERTIES:
:CUSTOM_ID: howto-get-context
:END:
One of the reasons which prevents this API from being RESTful is that
most operations require more than one instruction to the API to
perform the task. Sure, there are certain functions which can be
performed simultaneously, particularly if the result known or strongly
anticipated (e.g. selecting and encrypting to a key known to be in the
public keybox).
There are many more, however, which cannot be manipulated so readily:
they must be performed in a specific sequence and the result of one
operation has a direct bearing on the outcome of subsequent
operations. Not merely by generating an error either.
When dealing with this type of persistent state on the web, full of
both the RESTful and REST-like, it's most commonly referred to as a
session. In GPGME, however, it is called a context and every
operation type has one.
* Working with keys
:PROPERTIES:
:CUSTOM_ID: howto-keys
:END:
** Key selection
:PROPERTIES:
:CUSTOM_ID: howto-keys-selection
:END:
Selecting keys to encrypt to or to sign with will be a common
occurrence when working with GPGMe and the means available for doing
so are quite simple.
They do depend on utilising a Context; however once the data is
recorded in another variable, that Context does not need to be the
same one which subsequent operations are performed.
The easiest way to select a specific key is by searching for that
key's key ID or fingerprint, preferably the full fingerprint without
any spaces in it. A long key ID will probably be okay, but is not
advised and short key IDs are already a problem with some being
generated to match specific patterns. It does not matter whether the
pattern is upper or lower case.
So this is the best method:
#+BEGIN_SRC python -i
import gpg
k = gpg.Context().keylist(pattern="258E88DCBD3CD44D8E7AB43F6ECB6AF0DEADBEEF")
keys = list(k)
#+END_SRC
This is passable and very likely to be common:
#+BEGIN_SRC python -i
import gpg
k = gpg.Context().keylist(pattern="0x6ECB6AF0DEADBEEF")
keys = list(k)
#+END_SRC
And this is a really bad idea:
#+BEGIN_SRC python -i
import gpg
k = gpg.Context().keylist(pattern="0xDEADBEEF")
keys = list(k)
#+END_SRC
Alternatively it may be that the intention is to create a list of keys
which all match a particular search string. For instance all the
addresses at a particular domain, like this:
#+BEGIN_SRC python -i
import gpg
ncsc = gpg.Context().keylist(pattern="ncsc.mil")
nsa = list(ncsc)
#+END_SRC
*** Counting keys
:PROPERTIES:
:CUSTOM_ID: howto-keys-counting
:END:
Counting the number of keys in your public keybox (=pubring.kbx=), the
format which has superseded the old keyring format (=pubring.gpg= and
=secring.gpg=), or the number of secret keys is a very simple task.
#+BEGIN_SRC python -i
import gpg
c = gpg.Context()
seckeys = c.keylist(pattern=None, secret=True)
pubkeys = c.keylist(pattern=None, secret=False)
seclist = list(seckeys)
secnum = len(seclist)
publist = list(pubkeys)
pubnum = len(publist)
print("""
Number of secret keys: {0}
Number of public keys: {1}
""".format(secnum, pubnum))
#+END_SRC
** Get key
:PROPERTIES:
:CUSTOM_ID: howto-get-key
:END:
An alternative method of getting a single key via its fingerprint is
available directly within a Context with =Context().get_key=. This is
the preferred method of selecting a key in order to modify it, sign or
certify it and for obtaining relevant data about a single key as a
part of other functions; when verifying a signature made by that key,
for instance.
By default this method will select public keys, but it can select
secret keys as well.
This first example demonstrates selecting the current key of Werner
Koch, which is due to expire at the end of 2018:
#+BEGIN_SRC python -i
import gpg
fingerprint = "80615870F5BAD690333686D0F2AD85AC1E42B367"
key = gpg.Context().get_key(fingerprint)
#+END_SRC
Whereas this example demonstrates selecting the author's current key
with the =secret= key word argument set to =True=:
#+BEGIN_SRC python -i
import gpg
fingerprint = "DB4724E6FA4286C92B4E55C4321E4E2373590E5D"
key = gpg.Context().get_key(fingerprint, secret=True)
#+END_SRC
It is, of course, quite possible to select expired, disabled and
revoked keys with this function, but only to effectively display
information about those keys.
It is also possible to use both unicode or string literals and byte
literals with the fingerprint when getting a key in this way.
** Importing keys
:PROPERTIES:
:CUSTOM_ID: howto-import-key
:END:
Importing keys is possible with the =key_import()= method and takes
one argument which is a bytes literal object containing either the
binary or ASCII armoured key data for one or more keys.
The following example retrieves one or more keys from the SKS
keyservers via the web using the requests module. Since requests
returns the content as a bytes literal object, we can then use that
directly to import the resulting data into our keybox.
#+BEGIN_SRC python -i
import gpg
import os.path
import requests
c = gpg.Context()
url = "https://sks-keyservers.net/pks/lookup"
pattern = input("Enter the pattern to search for key or user IDs: ")
payload = { "op": "get", "search": pattern }
r = requests.get(url, verify=True, params=payload)
result = c.key_import(r.content)
if result is not None and hasattr(result, "considered") is False:
print(result)
elif result is not None and hasattr(result, "considered") is True:
num_keys = len(result.imports)
new_revs = result.new_revocations
new_sigs = result.new_signatures
new_subs = result.new_sub_keys
new_uids = result.new_user_ids
new_scrt = result.secret_imported
nochange = result.unchanged
print("""
The total number of keys considered for import was: {0}
Number of keys revoked: {1}
Number of new signatures: {2}
Number of new subkeys: {3}
Number of new user IDs: {4}
Number of new secret keys: {5}
Number of unchanged keys: {6}
The key IDs for all considered keys were:
""".format(num_keys, new_revs, new_sigs, new_subs, new_uids, new_scrt,
nochange))
for i in range(num_keys):
print("{0}\n".format(result.imports[i].fpr))
else:
pass
#+END_SRC
*NOTE:* When searching for a key ID of any length or a fingerprint
(without spaces), the SKS servers require the the leading =0x=
indicative of hexadecimal be included. Also note that the old short
key IDs (e.g. =0xDEADBEEF=) should no longer be used due to the
relative ease by which such key IDs can be reproduced, as demonstrated
by the Evil32 Project in 2014 (which was subsequently exploited in
2016).
Here is a variation on the above which checks the constrained
ProtonMail keyserver for ProtonMail public keys.
#+BEGIN_SRC python -i
import gpg
import requests
import sys
print("""
This script searches the ProtonMail key server for the specified key and
imports it.
""")
c = gpg.Context(armor=True)
url = "https://api.protonmail.ch/pks/lookup"
ksearch = []
if len(sys.argv) >= 2:
keyterm = sys.argv[1]
else:
keyterm = input("Enter the key ID, UID or search string: ")
if keyterm.count("@") == 2 and keyterm.startswith("@") is True:
ksearch.append(keyterm[1:])
ksearch.append(keyterm[1:])
ksearch.append(keyterm[1:])
elif keyterm.count("@") == 1 and keyterm.startswith("@") is True:
ksearch.append("{0}@protonmail.com".format(keyterm[1:]))
ksearch.append("{0}@protonmail.ch".format(keyterm[1:]))
ksearch.append("{0}@pm.me".format(keyterm[1:]))
elif keyterm.count("@") == 0:
ksearch.append("{0}@protonmail.com".format(keyterm))
ksearch.append("{0}@protonmail.ch".format(keyterm))
ksearch.append("{0}@pm.me".format(keyterm))
elif keyterm.count("@") == 2 and keyterm.startswith("@") is False:
uidlist = keyterm.split("@")
for uid in uidlist:
ksearch.append("{0}@protonmail.com".format(uid))
ksearch.append("{0}@protonmail.ch".format(uid))
ksearch.append("{0}@pm.me".format(uid))
elif keyterm.count("@") > 2:
uidlist = keyterm.split("@")
for uid in uidlist:
ksearch.append("{0}@protonmail.com".format(uid))
ksearch.append("{0}@protonmail.ch".format(uid))
ksearch.append("{0}@pm.me".format(uid))
else:
ksearch.append(keyterm)
for k in ksearch:
payload = {"op": "get", "search": k}
try:
r = requests.get(url, verify=True, params=payload)
if r.ok is True:
result = c.key_import(r.content)
elif r.ok is False:
result = r.content
except Exception as e:
result = None
if result is not None and hasattr(result, "considered") is False:
print("{0} for {1}".format(result.decode(), k))
elif result is not None and hasattr(result, "considered") is True:
num_keys = len(result.imports)
new_revs = result.new_revocations
new_sigs = result.new_signatures
new_subs = result.new_sub_keys
new_uids = result.new_user_ids
new_scrt = result.secret_imported
nochange = result.unchanged
print("""
The total number of keys considered for import was: {0}
With UIDs wholely or partially matching the following string:
{1}
Number of keys revoked: {2}
Number of new signatures: {3}
Number of new subkeys: {4}
Number of new user IDs: {5}
Number of new secret keys: {6}
Number of unchanged keys: {7}
The key IDs for all considered keys were:
""".format(num_keys, k, new_revs, new_sigs, new_subs, new_uids, new_scrt,
nochange))
for i in range(num_keys):
print(result.imports[i].fpr)
print("")
elif result is None:
print(e)
#+END_SRC
Both the above example, [[../examples/howto/pmkey-import.py][pmkey-import.py]], and a version which prompts
for an alternative GnuPG home directory, [[../examples/howto/pmkey-import-alt.py][pmkey-import-alt.py]], are
available with the other examples and are executable scripts.
Note that while the ProtonMail servers are based on the SKS servers,
their server is related more to their API and is not feature complete
by comparison to the servers in the SKS pool. One notable difference
being that the ProtonMail server does not permit non ProtonMail users
to update their own keys, which could be a vector for attacking
ProtonMail users who may not receive a key's revocation if it had been
compromised.
** Exporting keys
:PROPERTIES:
:CUSTOM_ID: howto-export-key
:END:
Exporting keys remains a reasonably simple task, but has been
separated into three different functions for the OpenPGP cryptographic
engine. Two of those functions are for exporting public keys and the
third is for exporting secret keys.
*** Exporting public keys
:PROPERTIES:
:CUSTOM_ID: howto-export-public-key
:END:
There are two methods of exporting public keys, both of which are very
similar to the other. The default method, =key_export()=, will export
a public key or keys matching a specified pattern as normal. The
alternative, the =key_export_minimal()= method, will do the same thing
except producing a minimised output with extra signatures and third
party signatures or certifications removed.
#+BEGIN_SRC python -i
import gpg
import os.path
import sys
print("""
This script exports one or more public keys.
""")
c = gpg.Context(armor=True)
if len(sys.argv) >= 4:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = sys.argv[3]
elif len(sys.argv) == 3:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = input("Enter the GPG configuration directory path (optional): ")
elif len(sys.argv) == 2:
keyfile = sys.argv[1]
logrus = input("Enter the UID matching the key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
else:
keyfile = input("Enter the path and filename to save the secret key to: ")
logrus = input("Enter the UID matching the key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
if homedir.startswith("~"):
if os.path.exists(os.path.expanduser(homedir)) is True:
c.home_dir = os.path.expanduser(homedir)
else:
pass
elif os.path.exists(homedir) is True:
c.home_dir = homedir
else:
pass
try:
result = c.key_export(pattern=logrus)
except:
result = c.key_export(pattern=None)
if result is not None:
with open(keyfile, "wb") as f:
f.write(result)
else:
pass
#+END_SRC
It is important to note that the result will only return =None= when a
pattern has been entered for =logrus=, but it has not matched any
keys. When the search pattern itself is set to =None= this triggers
the exporting of the entire public keybox.
#+BEGIN_SRC python -i
import gpg
import os.path
import sys
print("""
This script exports one or more public keys in minimised form.
""")
c = gpg.Context(armor=True)
if len(sys.argv) >= 4:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = sys.argv[3]
elif len(sys.argv) == 3:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = input("Enter the GPG configuration directory path (optional): ")
elif len(sys.argv) == 2:
keyfile = sys.argv[1]
logrus = input("Enter the UID matching the key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
else:
keyfile = input("Enter the path and filename to save the secret key to: ")
logrus = input("Enter the UID matching the key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
if homedir.startswith("~"):
if os.path.exists(os.path.expanduser(homedir)) is True:
c.home_dir = os.path.expanduser(homedir)
else:
pass
elif os.path.exists(homedir) is True:
c.home_dir = homedir
else:
pass
try:
result = c.key_export_minimal(pattern=logrus)
except:
result = c.key_export_minimal(pattern=None)
if result is not None:
with open(keyfile, "wb") as f:
f.write(result)
else:
pass
#+END_SRC
*** Exporting secret keys
:PROPERTIES:
:CUSTOM_ID: howto-export-secret-key
:END:
Exporting secret keys is, functionally, very similar to exporting
public keys; save for the invocation of =pinentry= via =gpg-agent= in
order to securely enter the key's passphrase and authorise the export.
The following example exports the secret key to a file which is then
set with the same permissions as the output files created by the
command line secret key export options.
#+BEGIN_SRC python -i
import gpg
import os
import os.path
import sys
print("""
This script exports one or more secret keys.
The gpg-agent and pinentry are invoked to authorise the export.
""")
c = gpg.Context(armor=True)
if len(sys.argv) >= 4:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = sys.argv[3]
elif len(sys.argv) == 3:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = input("Enter the GPG configuration directory path (optional): ")
elif len(sys.argv) == 2:
keyfile = sys.argv[1]
logrus = input("Enter the UID matching the secret key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
else:
keyfile = input("Enter the path and filename to save the secret key to: ")
logrus = input("Enter the UID matching the secret key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
if homedir.startswith("~"):
if os.path.exists(os.path.expanduser(homedir)) is True:
c.home_dir = os.path.expanduser(homedir)
else:
pass
elif os.path.exists(homedir) is True:
c.home_dir = homedir
else:
pass
try:
result = c.key_export_secret(pattern=logrus)
except:
result = c.key_export_secret(pattern=None)
if result is not None:
with open(keyfile, "wb") as f:
f.write(result)
os.chmod(keyfile, 0o600)
else:
pass
#+END_SRC
Alternatively the approach of the following script can be used. This
longer example saves the exported secret key(s) in files in the GnuPG
home directory, in addition to setting the file permissions as only
readable and writable by the user. It also exports the secret key(s)
twice in order to output both GPG binary (=.gpg=) and ASCII armoured
(=.asc=) files.
#+BEGIN_SRC python -i
import gpg
import os
import os.path
import subprocess
import sys
print("""
This script exports one or more secret keys as both ASCII armored and binary
file formats, saved in files within the user's GPG home directory.
The gpg-agent and pinentry are invoked to authorise the export.
""")
if sys.platform == "win32":
gpgconfcmd = "gpgconf.exe --list-dirs homedir"
else:
gpgconfcmd = "gpgconf --list-dirs homedir"
a = gpg.Context(armor=True)
b = gpg.Context()
c = gpg.Context()
if len(sys.argv) >= 4:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = sys.argv[3]
elif len(sys.argv) == 3:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = input("Enter the GPG configuration directory path (optional): ")
elif len(sys.argv) == 2:
keyfile = sys.argv[1]
logrus = input("Enter the UID matching the secret key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
else:
keyfile = input("Enter the filename to save the secret key to: ")
logrus = input("Enter the UID matching the secret key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
if homedir.startswith("~"):
if os.path.exists(os.path.expanduser(homedir)) is True:
c.home_dir = os.path.expanduser(homedir)
else:
pass
elif os.path.exists(homedir) is True:
c.home_dir = homedir
else:
pass
if c.home_dir is not None:
if c.home_dir.endswith("/"):
gpgfile = "{0}{1}.gpg".format(c.home_dir, keyfile)
ascfile = "{0}{1}.asc".format(c.home_dir, keyfile)
else:
gpgfile = "{0}/{1}.gpg".format(c.home_dir, keyfile)
ascfile = "{0}/{1}.asc".format(c.home_dir, keyfile)
else:
if os.path.exists(os.environ["GNUPGHOME"]) is True:
hd = os.environ["GNUPGHOME"]
else:
try:
hd = subprocess.getoutput(gpgconfcmd)
except:
process = subprocess.Popen(gpgconfcmd.split(),
stdout=subprocess.PIPE)
procom = process.communicate()
if sys.version_info[0] == 2:
hd = procom[0].strip()
else:
hd = procom[0].decode().strip()
gpgfile = "{0}/{1}.gpg".format(hd, keyfile)
ascfile = "{0}/{1}.asc".format(hd, keyfile)
try:
a_result = a.key_export_secret(pattern=logrus)
b_result = b.key_export_secret(pattern=logrus)
except:
a_result = a.key_export_secret(pattern=None)
b_result = b.key_export_secret(pattern=None)
if a_result is not None:
with open(ascfile, "wb") as f:
f.write(a_result)
os.chmod(ascfile, 0o600)
else:
pass
if b_result is not None:
with open(gpgfile, "wb") as f:
f.write(b_result)
os.chmod(gpgfile, 0o600)
else:
pass
#+END_SRC
* Basic Functions
:PROPERTIES:
:CUSTOM_ID: howto-the-basics
:END:
The most frequently called features of any cryptographic library will
be the most fundamental tasks for encryption software. In this
section we will look at how to programmatically encrypt data, decrypt
it, sign it and verify signatures.
** Encryption
:PROPERTIES:
:CUSTOM_ID: howto-basic-encryption
:END:
Encrypting is very straight forward. In the first example below the
message, =text=, is encrypted to a single recipient's key. In the
second example the message will be encrypted to multiple recipients.
*** Encrypting to one key
:PROPERTIES:
:CUSTOM_ID: howto-basic-encryption-single
:END:
Once the the Context is set the main issues with encrypting data is
essentially reduced to key selection and the keyword arguments
specified in the =gpg.Context().encrypt()= method.
Those keyword arguments are: =recipients=, a list of keys encrypted to
(covered in greater detail in the following section); =sign=, whether
or not to sign the plaintext data, see subsequent sections on signing
and verifying signatures below (defaults to =True=); =sink=, to write
results or partial results to a secure sink instead of returning it
(defaults to =None=); =passphrase=, only used when utilising symmetric
encryption (defaults to =None=); =always_trust=, used to override the
trust model settings for recipient keys (defaults to =False=);
=add_encrypt_to=, utilises any preconfigured =encrypt-to= or
=default-key= settings in the user's =gpg.conf= file (defaults to
=False=); =prepare=, prepare for encryption (defaults to =False=);
=expect_sign=, prepare for signing (defaults to =False=); =compress=,
compresses the plaintext prior to encryption (defaults to =True=).
#+BEGIN_SRC python -i
import gpg
a_key = "0x12345678DEADBEEF"
text = b"""Some text to test with.
Since the text in this case must be bytes, it is most likely that
the input form will be a separate file which is opened with "rb"
as this is the simplest method of obtaining the correct data format.
"""
c = gpg.Context(armor=True)
rkey = list(c.keylist(pattern=a_key, secret=False))
ciphertext, result, sign_result = c.encrypt(text, recipients=rkey, sign=False)
with open("secret_plans.txt.asc", "wb") as afile:
afile.write(ciphertext)
#+END_SRC
Though this is even more likely to be used like this; with the
plaintext input read from a file, the recipient keys used for
encryption regardless of key trust status and the encrypted output
also encrypted to any preconfigured keys set in the =gpg.conf= file:
#+BEGIN_SRC python -i
import gpg
a_key = "0x12345678DEADBEEF"
with open("secret_plans.txt", "rb") as afile:
text = afile.read()
c = gpg.Context(armor=True)
rkey = list(c.keylist(pattern=a_key, secret=False))
ciphertext, result, sign_result = c.encrypt(text, recipients=rkey, sign=True,
always_trust=True,
add_encrypt_to=True)
with open("secret_plans.txt.asc", "wb") as afile:
afile.write(ciphertext)
#+END_SRC
If the =recipients= paramater is empty then the plaintext is encrypted
symmetrically. If no =passphrase= is supplied as a parameter or via a
callback registered with the =Context()= then an out-of-band prompt
for the passphrase via pinentry will be invoked.
*** Encrypting to multiple keys
:PROPERTIES:
:CUSTOM_ID: howto-basic-encryption-multiple
:END:
Encrypting to multiple keys essentially just expands upon the key
selection process and the recipients from the previous examples.
The following example encrypts a message (=text=) to everyone with an
email address on the =gnupg.org= domain,[fn:5] but does /not/ encrypt
to a default key or other key which is configured to normally encrypt
to.
#+BEGIN_SRC python -i
import gpg
text = b"""Oh look, another test message.
The same rules apply as with the previous example and more likely
than not, the message will actually be drawn from reading the
contents of a file or, maybe, from entering data at an input()
prompt.
Since the text in this case must be bytes, it is most likely that
the input form will be a separate file which is opened with "rb"
as this is the simplest method of obtaining the correct data
format.
"""
c = gpg.Context(armor=True)
rpattern = list(c.keylist(pattern="@gnupg.org", secret=False))
logrus = []
for i in range(len(rpattern)):
if rpattern[i].can_encrypt == 1:
logrus.append(rpattern[i])
ciphertext, result, sign_result = c.encrypt(text, recipients=logrus,
sign=False, always_trust=True)
with open("secret_plans.txt.asc", "wb") as afile:
afile.write(ciphertext)
#+END_SRC
All it would take to change the above example to sign the message
and also encrypt the message to any configured default keys would
be to change the =c.encrypt= line to this:
#+BEGIN_SRC python -i
ciphertext, result, sign_result = c.encrypt(text, recipients=logrus,
always_trust=True,
add_encrypt_to=True)
#+END_SRC
The only keyword arguments requiring modification are those for which
the default values are changing. The default value of =sign= is
=True=, the default of =always_trust= is =False=, the default of
=add_encrypt_to= is =False=.
If =always_trust= is not set to =True= and any of the recipient keys
are not trusted (e.g. not signed or locally signed) then the
encryption will raise an error. It is possible to mitigate this
somewhat with something more like this:
#+BEGIN_SRC python -i
import gpg
with open("secret_plans.txt.asc", "rb") as afile:
text = afile.read()
c = gpg.Context(armor=True)
rpattern = list(c.keylist(pattern="@gnupg.org", secret=False))
logrus = []
for i in range(len(rpattern)):
if rpattern[i].can_encrypt == 1:
logrus.append(rpattern[i])
try:
ciphertext, result, sign_result = c.encrypt(text, recipients=logrus,
add_encrypt_to=True)
except gpg.errors.InvalidRecipients as e:
for i in range(len(e.recipients)):
for n in range(len(logrus)):
if logrus[n].fpr == e.recipients[i].fpr:
logrus.remove(logrus[n])
else:
pass
try:
ciphertext, result, sign_result = c.encrypt(text,
recipients=logrus,
add_encrypt_to=True)
with open("secret_plans.txt.asc", "wb") as afile:
afile.write(ciphertext)
except:
pass
#+END_SRC
This will attempt to encrypt to all the keys searched for, then remove
invalid recipients if it fails and try again.
** Decryption
:PROPERTIES:
:CUSTOM_ID: howto-basic-decryption
:END:
Decrypting something encrypted to a key in one's secret keyring is
fairly straight forward.
In this example code, however, preconfiguring either =gpg.Context()=
or =gpg.core.Context()= as =c= is unnecessary because there is no need
to modify the Context prior to conducting the decryption and since the
Context is only used once, setting it to =c= simply adds lines for no
gain.
#+BEGIN_SRC python -i
import gpg
ciphertext = input("Enter path and filename of encrypted file: ")
newfile = input("Enter path and filename of file to save decrypted data to: ")
with open(ciphertext, "rb") as cfile:
try:
plaintext, result, verify_result = gpg.Context().decrypt(cfile)
except gpg.errors.GPGMEError as e:
plaintext = None
print(e)
if plaintext is not None:
with open(newfile, "wb") as nfile:
nfile.write(plaintext)
else:
pass
#+END_SRC
The data available in =plaintext= in this example is the decrypted
content as a byte object, the recipient key IDs and algorithms in
=result= and the results of verifying any signatures of the data in
=verify_result=.
** Signing text and files
:PROPERTIES:
:CUSTOM_ID: howto-basic-signing
:END:
The following sections demonstrate how to specify keys to sign with.
*** Signing key selection
:PROPERTIES:
:CUSTOM_ID: howto-basic-signing-signers
:END:
By default GPGME and the Python bindings will use the default key
configured for the user invoking the GPGME API. If there is no
default key specified and there is more than one secret key available
it may be necessary to specify the key or keys with which to sign
messages and files.
#+BEGIN_SRC python -i
import gpg
logrus = input("Enter the email address or string to match signing keys to: ")
hancock = gpg.Context().keylist(pattern=logrus, secret=True)
sig_src = list(hancock)
#+END_SRC
The signing examples in the following sections include the explicitly
designated =signers= parameter in two of the five examples; once where
the resulting signature would be ASCII armoured and once where it
would not be armoured.
While it would be possible to enter a key ID or fingerprint here to
match a specific key, it is not possible to enter two fingerprints and
match two keys since the patten expects a string, bytes or None and
not a list. A string with two fingerprints won't match any single
key.
*** Normal or default signing messages or files
:PROPERTIES:
:CUSTOM_ID: howto-basic-signing-normal
:END:
The normal or default signing process is essentially the same as is
most often invoked when also encrypting a message or file. So when
the encryption component is not utilised, the result is to produce an
encoded and signed output which may or may not be ASCII armoured and
which may or may not also be compressed.
By default compression will be used unless GnuPG detects that the
plaintext is already compressed. ASCII armouring will be determined
according to the value of =gpg.Context().armor=.
The compression algorithm is selected in much the same way as the
symmetric encryption algorithm or the hash digest algorithm is when
multiple keys are involved; from the preferences saved into the key
itself or by comparison with the preferences with all other keys
involved.
#+BEGIN_SRC python -i
import gpg
text0 = """Declaration of ... something.
"""
text = text0.encode()
c = gpg.Context(armor=True, signers=sig_src)
signed_data, result = c.sign(text, mode=gpg.constants.sig.mode.NORMAL)
with open("/path/to/statement.txt.asc", "w") as afile:
afile.write(signed_data.decode())
#+END_SRC
Though everything in this example is accurate, it is more likely that
reading the input data from another file and writing the result to a
new file will be performed more like the way it is done in the next
example. Even if the output format is ASCII armoured.
#+BEGIN_SRC python -i
import gpg
with open("/path/to/statement.txt", "rb") as tfile:
text = tfile.read()
c = gpg.Context()
signed_data, result = c.sign(text, mode=gpg.constants.sig.mode.NORMAL)
with open("/path/to/statement.txt.sig", "wb") as afile:
afile.write(signed_data)
#+END_SRC
*** Detached signing messages and files
:PROPERTIES:
:CUSTOM_ID: howto-basic-signing-detached
:END:
Detached signatures will often be needed in programmatic uses of
GPGME, either for signing files (e.g. tarballs of code releases) or as
a component of message signing (e.g. PGP/MIME encoded email).
#+BEGIN_SRC python -i
import gpg
text0 = """Declaration of ... something.
"""
text = text0.encode()
c = gpg.Context(armor=True)
signed_data, result = c.sign(text, mode=gpg.constants.sig.mode.DETACH)
with open("/path/to/statement.txt.asc", "w") as afile:
afile.write(signed_data.decode())
#+END_SRC
As with normal signatures, detached signatures are best handled as
byte literals, even when the output is ASCII armoured.
#+BEGIN_SRC python -i
import gpg
with open("/path/to/statement.txt", "rb") as tfile:
text = tfile.read()
c = gpg.Context(signers=sig_src)
signed_data, result = c.sign(text, mode=gpg.constants.sig.mode.DETACH)
with open("/path/to/statement.txt.sig", "wb") as afile:
afile.write(signed_data)
#+END_SRC
*** Clearsigning messages or text
:PROPERTIES:
:CUSTOM_ID: howto-basic-signing-clear
:END:
Though PGP/in-line messages are no longer encouraged in favour of
PGP/MIME, there is still sometimes value in utilising in-line
signatures. This is where clear-signed messages or text is of value.
#+BEGIN_SRC python -i
import gpg
text0 = """Declaration of ... something.
"""
text = text0.encode()
c = gpg.Context()
signed_data, result = c.sign(text, mode=gpg.constants.sig.mode.CLEAR)
with open("/path/to/statement.txt.asc", "w") as afile:
afile.write(signed_data.decode())
#+END_SRC
In spite of the appearance of a clear-signed message, the data handled
by GPGME in signing it must still be byte literals.
#+BEGIN_SRC python -i
import gpg
with open("/path/to/statement.txt", "rb") as tfile:
text = tfile.read()
c = gpg.Context()
signed_data, result = c.sign(text, mode=gpg.constants.sig.mode.CLEAR)
with open("/path/to/statement.txt.asc", "wb") as afile:
afile.write(signed_data)
#+END_SRC
** Signature verification
:PROPERTIES:
:CUSTOM_ID: howto-basic-verification
:END:
Essentially there are two principal methods of verification of a
signature. The first of these is for use with the normal or default
signing method and for clear-signed messages. The second is for use
with files and data with detached signatures.
The following example is intended for use with the default signing
method where the file was not ASCII armoured:
#+BEGIN_SRC python -i
import gpg
import time
filename = "statement.txt"
gpg_file = "statement.txt.gpg"
c = gpg.Context()
try:
data, result = c.verify(open(gpg_file))
verified = True
except gpg.errors.BadSignatures as e:
verified = False
print(e)
if verified is True:
for i in range(len(result.signatures)):
sign = result.signatures[i]
print("""Good signature from:
{0}
with key {1}
made at {2}
""".format(c.get_key(sign.fpr).uids[0].uid, sign.fpr,
time.ctime(sign.timestamp)))
else:
pass
#+END_SRC
Whereas this next example, which is almost identical would work with
normal ASCII armoured files and with clear-signed files:
#+BEGIN_SRC python -i
import gpg
import time
filename = "statement.txt"
asc_file = "statement.txt.asc"
c = gpg.Context()
try:
data, result = c.verify(open(asc_file))
verified = True
except gpg.errors.BadSignatures as e:
verified = False
print(e)
if verified is True:
for i in range(len(result.signatures)):
sign = result.signatures[i]
print("""Good signature from:
{0}
with key {1}
made at {2}
""".format(c.get_key(sign.fpr).uids[0].uid, sign.fpr,
time.ctime(sign.timestamp)))
else:
pass
#+END_SRC
In both of the previous examples it is also possible to compare the
original data that was signed against the signed data in =data= to see
if it matches with something like this:
#+BEGIN_SRC python -i
with open(filename, "rb") as afile:
text = afile.read()
if text == data:
print("Good signature.")
else:
pass
#+END_SRC
The following two examples, however, deal with detached signatures.
With his method of verification the data that was signed does not get
returned since it is already being explicitly referenced in the first
argument of =c.verify=. So =data= is =None= and only the information
in =result= is available.
#+BEGIN_SRC python -i
import gpg
import time
filename = "statement.txt"
sig_file = "statement.txt.sig"
c = gpg.Context()
try:
data, result = c.verify(open(filename), open(sig_file))
verified = True
except gpg.errors.BadSignatures as e:
verified = False
print(e)
if verified is True:
for i in range(len(result.signatures)):
sign = result.signatures[i]
print("""Good signature from:
{0}
with key {1}
made at {2}
""".format(c.get_key(sign.fpr).uids[0].uid, sign.fpr,
time.ctime(sign.timestamp)))
else:
pass
#+END_SRC
#+BEGIN_SRC python -i
import gpg
import time
filename = "statement.txt"
asc_file = "statement.txt.asc"
c = gpg.Context()
try:
data, result = c.verify(open(filename), open(asc_file))
verified = True
except gpg.errors.BadSignatures as e:
verified = False
print(e)
if verified is True:
for i in range(len(result.signatures)):
sign = result.signatures[i]
print("""Good signature from:
{0}
with key {1}
made at {2}
""".format(c.get_key(sign.fpr).uids[0].uid, sign.fpr,
time.ctime(sign.timestamp)))
else:
pass
#+END_SRC
* Creating keys and subkeys
:PROPERTIES:
:CUSTOM_ID: key-generation
:END:
The one thing, aside from GnuPG itself, that GPGME depends on, of
course, is the keys themselves. So it is necessary to be able to
generate them and modify them by adding subkeys, revoking or disabling
them, sometimes deleting them and doing the same for user IDs.
In the following examples a key will be created for the world's
greatest secret agent, Danger Mouse. Since Danger Mouse is a secret
agent he needs to be able to protect information to =SECRET= level
clearance, so his keys will be 3072-bit keys.
The pre-configured =gpg.conf= file which sets cipher, digest and other
preferences contains the following configuration parameters:
#+BEGIN_SRC conf
expert
allow-freeform-uid
allow-secret-key-import
trust-model tofu+pgp
tofu-default-policy unknown
enable-large-rsa
enable-dsa2
cert-digest-algo SHA512
default-preference-list TWOFISH CAMELLIA256 AES256 CAMELLIA192 AES192 CAMELLIA128 AES BLOWFISH IDEA CAST5 3DES SHA512 SHA384 SHA256 SHA224 RIPEMD160 SHA1 ZLIB BZIP2 ZIP Uncompressed
personal-cipher-preferences TWOFISH CAMELLIA256 AES256 CAMELLIA192 AES192 CAMELLIA128 AES BLOWFISH IDEA CAST5 3DES
personal-digest-preferences SHA512 SHA384 SHA256 SHA224 RIPEMD160 SHA1
personal-compress-preferences ZLIB BZIP2 ZIP Uncompressed
#+END_SRC
** Primary key
:PROPERTIES:
:CUSTOM_ID: keygen-primary
:END:
Generating a primary key uses the =create_key= method in a Context.
It contains multiple arguments and keyword arguments, including:
=userid=, =algorithm=, =expires_in=, =expires=, =sign=, =encrypt=,
=certify=, =authenticate=, =passphrase= and =force=. The defaults for
all of those except =userid=, =algorithm=, =expires_in=, =expires= and
=passphrase= is =False=. The defaults for =algorithm= and
=passphrase= is =None=. The default for =expires_in= is =0=. The
default for =expires= is =True=. There is no default for =userid=.
If =passphrase= is left as =None= then the key will not be generated
with a passphrase, if =passphrase= is set to a string then that will
be the passphrase and if =passphrase= is set to =True= then gpg-agent
will launch pinentry to prompt for a passphrase. For the sake of
convenience, these examples will keep =passphrase= set to =None=.
#+BEGIN_SRC python -i
import gpg
c = gpg.Context()
c.home_dir = "~/.gnupg-dm"
userid = "Danger Mouse <dm@secret.example.net>"
dmkey = c.create_key(userid, algorithm="rsa3072", expires_in=31536000,
sign=True, certify=True)
#+END_SRC
One thing to note here is the use of setting the =c.home_dir=
parameter. This enables generating the key or keys in a different
location. In this case to keep the new key data created for this
example in a separate location rather than adding it to existing and
active key store data. As with the default directory, =~/.gnupg=, any
temporary or separate directory needs the permissions set to only
permit access by the directory owner. On posix systems this means
setting the directory permissions to 700.
The =temp-homedir-config.py= script in the HOWTO examples directory
will create an alternative homedir with these configuration options
already set and the correct directory and file permissions.
The successful generation of the key can be confirmed via the returned
=GenkeyResult= object, which includes the following data:
#+BEGIN_SRC python -i
print("""
Fingerprint: {0}
Primary Key: {1}
Public Key: {2}
Secret Key: {3}
Sub Key: {4}
User IDs: {5}
""".format(dmkey.fpr, dmkey.primary, dmkey.pubkey, dmkey.seckey, dmkey.sub,
dmkey.uid))
#+END_SRC
Alternatively the information can be confirmed using the command line
program:
#+BEGIN_SRC shell
bash-4.4$ gpg --homedir ~/.gnupg-dm -K
~/.gnupg-dm/pubring.kbx
----------------------
sec rsa3072 2018-03-15 [SC] [expires: 2019-03-15]
177B7C25DB99745EE2EE13ED026D2F19E99E63AA
uid [ultimate] Danger Mouse <dm@secret.example.net>
bash-4.4$
#+END_SRC
As with generating keys manually, to preconfigure expanded preferences
for the cipher, digest and compression algorithms, the =gpg.conf= file
must contain those details in the home directory in which the new key
is being generated. I used a cut down version of my own =gpg.conf=
file in order to be able to generate this:
#+BEGIN_SRC shell
bash-4.4$ gpg --homedir ~/.gnupg-dm --edit-key 177B7C25DB99745EE2EE13ED026D2F19E99E63AA showpref quit
Secret key is available.
sec rsa3072/026D2F19E99E63AA
created: 2018-03-15 expires: 2019-03-15 usage: SC
trust: ultimate validity: ultimate
[ultimate] (1). Danger Mouse <dm@secret.example.net>
[ultimate] (1). Danger Mouse <dm@secret.example.net>
Cipher: TWOFISH, CAMELLIA256, AES256, CAMELLIA192, AES192, CAMELLIA128, AES, BLOWFISH, IDEA, CAST5, 3DES
Digest: SHA512, SHA384, SHA256, SHA224, RIPEMD160, SHA1
Compression: ZLIB, BZIP2, ZIP, Uncompressed
Features: MDC, Keyserver no-modify
bash-4.4$
#+END_SRC
** Subkeys
:PROPERTIES:
:CUSTOM_ID: keygen-subkeys
:END:
Adding subkeys to a primary key is fairly similar to creating the
primary key with the =create_subkey= method. Most of the arguments
are the same, but not quite all. Instead of the =userid= argument
there is now a =key= argument for selecting which primary key to add
the subkey to.
In the following example an encryption subkey will be added to the
primary key. Since Danger Mouse is a security conscious secret agent,
this subkey will only be valid for about six months, half the length
of the primary key.
#+BEGIN_SRC python -i
import gpg
c = gpg.Context()
c.home_dir = "~/.gnupg-dm"
key = c.get_key(dmkey.fpr, secret=True)
dmsub = c.create_subkey(key, algorithm="rsa3072", expires_in=15768000,
encrypt=True)
#+END_SRC
As with the primary key, the results here can be checked with:
#+BEGIN_SRC python -i
print("""
Fingerprint: {0}
Primary Key: {1}
Public Key: {2}
Secret Key: {3}
Sub Key: {4}
User IDs: {5}
""".format(dmsub.fpr, dmsub.primary, dmsub.pubkey, dmsub.seckey, dmsub.sub,
dmsub.uid))
#+END_SRC
As well as on the command line with:
#+BEGIN_SRC shell
bash-4.4$ gpg --homedir ~/.gnupg-dm -K
~/.gnupg-dm/pubring.kbx
----------------------
sec rsa3072 2018-03-15 [SC] [expires: 2019-03-15]
177B7C25DB99745EE2EE13ED026D2F19E99E63AA
uid [ultimate] Danger Mouse <dm@secret.example.net>
ssb rsa3072 2018-03-15 [E] [expires: 2018-09-13]
bash-4.4$
#+END_SRC
** User IDs
:PROPERTIES:
:CUSTOM_ID: keygen-uids
:END:
*** Adding User IDs
:PROPERTIES:
:CUSTOM_ID: keygen-uids-add
:END:
By comparison to creating primary keys and subkeys, adding a new user
ID to an existing key is much simpler. The method used to do this is
=key_add_uid= and the only arguments it takes are for the =key= and
the new =uid=.
#+BEGIN_SRC python -i
import gpg
c = gpg.Context()
c.home_dir = "~/.gnupg-dm"
dmfpr = "177B7C25DB99745EE2EE13ED026D2F19E99E63AA"
key = c.get_key(dmfpr, secret=True)
uid = "Danger Mouse <danger.mouse@secret.example.net>"
c.key_add_uid(key, uid)
#+END_SRC
Unsurprisingly the result of this is:
#+BEGIN_SRC shell
bash-4.4$ gpg --homedir ~/.gnupg-dm -K
~/.gnupg-dm/pubring.kbx
----------------------
sec rsa3072 2018-03-15 [SC] [expires: 2019-03-15]
177B7C25DB99745EE2EE13ED026D2F19E99E63AA
uid [ultimate] Danger Mouse <danger.mouse@secret.example.net>
uid [ultimate] Danger Mouse <dm@secret.example.net>
ssb rsa3072 2018-03-15 [E] [expires: 2018-09-13]
bash-4.4$
#+END_SRC
*** Revokinging User IDs
:PROPERTIES:
:CUSTOM_ID: keygen-uids-revoke
:END:
Revoking a user ID is a fairly similar process, except that it uses
the =key_revoke_uid= method.
#+BEGIN_SRC python -i
import gpg
c = gpg.Context()
c.home_dir = "~/.gnupg-dm"
dmfpr = "177B7C25DB99745EE2EE13ED026D2F19E99E63AA"
key = c.get_key(dmfpr, secret=True)
uid = "Danger Mouse <danger.mouse@secret.example.net>"
c.key_revoke_uid(key, uid)
#+END_SRC
** Key certification
:PROPERTIES:
:CUSTOM_ID: key-sign
:END:
Since key certification is more frequently referred to as key signing,
the method used to perform this function is =key_sign=.
The =key_sign= method takes four arguments: =key=, =uids=,
=expires_in= and =local=. The default value of =uids= is =None= and
which results in all user IDs being selected. The default value of
both =expires_in= and =local= is =False=; which results in the
signature never expiring and being able to be exported.
The =key= is the key being signed rather than the key doing the
signing. To change the key doing the signing refer to the signing key
selection above for signing messages and files.
If the =uids= value is not =None= then it must either be a string to
match a single user ID or a list of strings to match multiple user
IDs. In this case the matching of those strings must be precise and
it is case sensitive.
To sign Danger Mouse's key for just the initial user ID with a
signature which will last a little over a month, do this:
#+BEGIN_SRC python -i
import gpg
c = gpg.Context()
uid = "Danger Mouse <dm@secret.example.net>"
dmfpr = "177B7C25DB99745EE2EE13ED026D2F19E99E63AA"
key = c.get_key(dmfpr, secret=True)
c.key_sign(key, uids=uid, expires_in=2764800)
#+END_SRC
* Miscellaneous work-arounds
:PROPERTIES:
:CUSTOM_ID: cheats-and-hacks
:END:
** Group lines
:PROPERTIES:
:CUSTOM_ID: group-lines
:END:
There is not yet an easy way to access groups configured in the
gpg.conf file from within GPGME. As a consequence these central
groupings of keys cannot be shared amongst multiple programs, such as
MUAs readily.
The following code, however, provides a work-around for obtaining this
information in Python.
#+BEGIN_SRC python -i
import subprocess
import sys
try:
lines = subprocess.getoutput("gpgconf --list-options gpg").splitlines()
except:
process = subprocess.Popen(gpgconfcmd.split(), stdout=subprocess.PIPE)
procom = process.communicate()
if sys.version_info[0] == 2:
lines = procom[0].splitlines()
else:
lines = procom[0].decode().splitlines()
for i in range(len(lines)):
if lines[i].startswith("group") is True:
line = lines[i]
else:
pass
groups = line.split(":")[-1].replace('"', '').split(',')
group_lines = []
group_lists = []
for i in range(len(groups)):
group_lines.append(groups[i].split("="))
group_lists.append(groups[i].split("="))
for i in range(len(group_lists)):
group_lists[i][1] = group_lists[i][1].split()
#+END_SRC
The result of that code is that =group_lines= is a list of lists where
=group_lines[i][0]= is the name of the group and =group_lines[i][1]=
is the key IDs of the group as a string.
The =group_lists= result is very similar in that it is a list of
lists. The first part, =group_lists[i][0]= matches
=group_lines[i][0]= as the name of the group, but =group_lists[i][1]=
is the key IDs of the group as a string.
A demonstration of using the =groups.py= module is also available in
the form of the executable =mutt-groups.py= script. This second
script reads all the group entries in a user's =gpg.conf= file and
converts them into crypt-hooks suitable for use with the Mutt and
Neomutt mail clients.
* Copyright and Licensing
:PROPERTIES:
:CUSTOM_ID: copyright-and-license
:END:
** Copyright (C) The GnuPG Project, 2018
:PROPERTIES:
:CUSTOM_ID: copyright
:END:
Copyright © The GnuPG Project, 2018.
** License GPL compatible
:PROPERTIES:
:CUSTOM_ID: license
:END:
This file is free software; as a special exception the author gives
unlimited permission to copy and/or distribute it, with or without
modifications, as long as this notice is preserved.
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY, to the extent permitted by law; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.
* Footnotes
[fn:1] =Short_History.org= and/or =Short_History.html=.
[fn:2] The =lang/python/docs/= directory in the GPGME source.
[fn:3] As Python 3.7 is a very recent release, it is not given
priority over 3.6 yet, but will probably be prioritised by the release
of Python 3.7.2.
[fn:4] Yes, even if you use virtualenv with everything you do in
Python. If you want to install this module as just your user account
then you will need to manually configure, compile and install the
/entire/ GnuPG stack as that user as well. This includes libraries
which are not often installed that way. It can be done and there are
circumstances under which it is worthwhile, but generally only on
POSIX systems which utilise single user mode (some even require it).
[fn:5] You probably don't really want to do this. Searching the
keyservers for "gnupg.org" produces over 400 results, the majority of
which aren't actually at the gnupg.org domain, but just included a
comment regarding the project in their key somewhere.