* Updated the Cython example code slightly, along with the corresponding explanation.
72 KiB
GNU Privacy Guard (GnuPG) Made Easy Python Bindings HOWTO (English)
- Introduction
- GPGME Concepts
- GPGME Python bindings installation
- Fundamentals
- Working with keys
- Basic Functions
- Creating keys and subkeys
- Advanced or Experimental Use Cases
- Miscellaneous work-arounds
- Copyright and Licensing
- Footnotes
Introduction
Version: | 0.1.4 |
GPGME Version: | 1.12.0-draft |
Author: | Ben McGinnes <ben@gnupg.org> |
Author GPG Key: | DB4724E6FA4286C92B4E55C4321E4E2373590E5D |
Language: | Australian English, British English |
xml:lang: | en-AU, en-GB, en |
This document provides basic instruction in how to use the GPGME Python bindings to programmatically leverage the GPGME library.
Python 2 versus Python 3
Though the GPGME Python bindings themselves provide support for both Python 2 and 3, the focus is unequivocally on Python 3 and specifically from Python 3.4 and above. As a consequence all the examples and instructions in this guide use Python 3 code.
Much of it will work with Python 2, but much of it also deals with Python 3 byte literals, particularly when reading and writing data. Developers concentrating on Python 2.7, and possibly even 2.6, will need to make the appropriate modifications to support the older string and unicode types as opposed to bytes.
There are multiple reasons for concentrating on Python 3; some of which relate to the immediate integration of these bindings, some of which relate to longer term plans for both GPGME and the python bindings and some of which relate to the impending EOL period for Python 2.7. Essentially, though, there is little value in tying the bindings to a version of the language which is a dead end and the advantages offered by Python 3 over Python 2 make handling the data types with which GPGME deals considerably easier.
Examples
All of the examples found in this document can be found as Python 3
scripts in the lang/python/examples/howto
directory.
GPGME Concepts
A C API
Unlike many modern APIs with which programmers will be more familiar
with these days, the GPGME API is a C API. The API is intended for
use by C coders who would be able to access its features by including
the gpgme.h
header file with their own C source code and then access
its functions just as they would any other C headers.
This is a very effective method of gaining complete access to the API and in the most efficient manner possible. It does, however, have the drawback that it cannot be directly used by other languages without some means of providing an interface to those languages. This is where the need for bindings in various languages stems.
Python bindings
The Python bindings for GPGME provide a higher level means of accessing the complete feature set of GPGME itself. It also provides a more pythonic means of calling these API functions.
The bindings are generated dynamically with SWIG and the copy of
gpgme.h
generated when GPGME is compiled.
This means that a version of the Python bindings is fundamentally tied
to the exact same version of GPGME used to generate that copy of
gpgme.h
.
Difference between the Python bindings and other GnuPG Python packages
There have been numerous attempts to add GnuPG support to Python over the years. Some of the most well known are listed here, along with what differentiates them.
The python-gnupg package maintained by Vinay Sajip
This is arguably the most popular means of integrating GPG with
Python. The package utilises the subprocess
module to implement
wrappers for the gpg
and gpg2
executables normally invoked on the
command line (gpg.exe
and gpg2.exe
on Windows).
The popularity of this package stemmed from its ease of use and capability in providing the most commonly required features.
Unfortunately it has been beset by a number of security issues in the
past; most of which stemmed from using unsafe methods of accessing the
command line via the subprocess
calls. While some effort has been
made over the last two to three years (as of 2018) to mitigate this,
particularly by no longer providing shell access through those
subprocess calls, the wrapper is still somewhat limited in the scope
of its GnuPG features coverage.
The python-gnupg package is available under the MIT license.
The gnupg package created and maintained by Isis Lovecruft
In 2015 Isis Lovecruft from the Tor Project forked and then
re-implemented the python-gnupg package as just gnupg. This new
package also relied on subprocess to call the gpg
or gpg2
binaries, but did so somewhat more securely.
The naming and version numbering selected for this package, however, resulted in conflicts with the original python-gnupg and since its functions were called in a different manner to python-gnupg, the release of this package also resulted in a great deal of consternation when people installed what they thought was an upgrade that subsequently broke the code relying on it.
The gnupg package is available under the GNU General Public License version 3.0 (or any later version).
The PyME package maintained by Martin Albrecht
This package is the origin of these bindings, though they are somewhat
different now. For details of when and how the PyME package was
folded back into GPGME itself see the Short History document1
in the Python bindings docs
directory.2
The PyME package was first released in 2002 and was also the first
attempt to implement a low level binding to GPGME. In doing so it
provided access to considerably more functionality than either the
python-gnupg
or gnupg
packages.
The PyME package is only available for Python 2.6 and 2.7.
Porting the PyME package to Python 3.4 in 2015 is what resulted in it being folded into the GPGME project and the current bindings are the end result of that effort.
The PyME package is available under the same dual licensing as GPGME itself: the GNU General Public License version 2.0 (or any later version) and the GNU Lesser General Public License version 2.1 (or any later version).
GPGME Python bindings installation
No PyPI
Most third-party Python packages and modules are available and distributed through the Python Package Installer, known as PyPI.
Due to the nature of what these bindings are and how they work, it is infeasible to install the GPGME Python bindings in the same way.
This is because the bindings use SWIG to dynamically generate C
bindings against gpgme.h
and gpgme.h
is generated from
gpgme.h.in
at compile time when GPGME is built from source. Thus to
include a package in PyPI which actually built correctly would require
either statically built libraries for every architecture bundled with
it or a full implementation of C for each architecture.
See the additional notes regarding CFFI and SWIG at the end of this section for further details.
Requirements
The GPGME Python bindings only have three requirements:
- A suitable version of Python 2 or Python 3. With Python 2 that means Python 2.7 and with Python 3 that means Python 3.4 or higher.
- SWIG.
- GPGME itself. Which also means that all of GPGME's dependencies must be installed too.
Installation
Installing the Python bindings is effectively achieved by compiling and installing GPGME itself.
Once SWIG is installed with Python and all the dependencies for GPGME
are installed you only need to confirm that the version(s) of Python
you want the bindings installed for are in your $PATH
.
By default GPGME will attempt to install the bindings for the most
recent or highest version number of Python 2 and Python 3 it detects
in $PATH
. It specifically checks for the python
and python3
executables first and then checks for specific version numbers.
For Python 2 it checks for these executables in this order: python
,
python2
and python2.7
.
For Python 3 it checks for these executables in this order: python3
,
python3.6
, python3.5
, python3.4
and python3.7
.3
Installing GPGME
See the GPGME README
file for details of how to install GPGME from
source.
Known Issues
There are a few known issues with the current build process and the Python bindings. For the most part these are easily addressed should they be encountered.
Breaking Builds
Occasionally when installing GPGME with the Python bindings included
it may be observed that the make
portion of that process induces a
large very number of warnings and, eventually errors which end that
part of the build process. Yet following that with make check
and
make install
appears to work seamlessly.
The cause of this is related to the way SWIG needs to be called to
dynamically generate the C bindings for GPGME in the first place. So
the entire process will always produce lang/python/python2-gpg/
and
lang/python/python3-gpg/
directories. These should contain the
build output generated during compilation, including the complete
bindings and module installed into site-packages
.
Occasionally the errors in the early part or some other conflict
(e.g. not installing as root or su) may result in nothing
being installed to the relevant site-packages
directory and the
build directory missing a lot of expected files. Even when this
occurs, the solution is actually quite simple and will always work.
That solution is simply to run the following commands as either the
root user or prepended with sudo -H
4 in the lang/python/
directory:
/path/to/pythonX.Y setup.py build
/path/to/pythonX.Y setup.py build
/path/to/pythonX.Y setup.py install
Yes, the build command does need to be run twice. Yes, you still need
to run the potentially failing or incomplete steps during the
configure
, make
and make install
steps with installing GPGME.
This is because those steps generate a lot of essential files needed,
both by and in order to create, the bindings (including both the
setup.py
and gpgme.h
files).
IMPORTANT Note
If specifying a selected number of languages to create bindings for, try to leave Python last. Currently the majority of the other language bindings are also preceding Python of either version when listed alphabetically and so that just happens by default currently.
If Python is set to precede one of the other languages then it is
possible that the errors described here may interrupt the build
process before generating bindings for those other languages. In
these cases it may be preferable to configure all preferred language
bindings separately with alternative configure
steps for GPGME using
the --enable-languages=$LANGUAGE
option.
Multiple installations
For a veriety of reasons it may be either necessary or just preferable to install the bindings to alternative installed Python versions which meet the requirements of these bindings.
On POSIX systems this will generally be most simply achieved by running the manual installation commands (build, build, install) as described in the previous section for each Python installation the bindings need to be installed to.
As per the SWIG documentation: the compilers, libraries and runtime used to build GPGME and the Python Bindings must match those used to compile Python itself, including the version number(s) (at least going by major version numbers and probably minor numbers too).
On most POSIX systems, including OS X, this will very likely be the case in most, if not all, cases.
Won't Work With Windows
There are semi-regular reports of Windows users having considerable
difficulty in installing and using the Python bindings at all. Very
often, possibly even always, these reports come from Cygwin users
and/or MinGW users and/or Msys2 users. Though not all of them have
been confirmed, it appears that these reports have also come from
people who installed Python using the Windows installer files from the
Python website (i.e. mostly MSI installers, sometimes self-extracting
.exe
files).
The Windows versions of Python are not built using Cygwin, MinGW or Msys2; they're built using Microsoft Visual Studio. Furthermore the version used is considerably more advanced than the version which MinGW obtained a small number of files from many years ago in order to be able to compile anything at all. Not only that, but there are changes to the version of Visual Studio between some micro releases, though that is is particularly the case with Python 2.7, since it has been kept around far longer than it should have been.
There are two theoretical solutions to this issue:
- Compile and install the GnuPG stack, including GPGME and the Python bibdings using the same version of Microsoft Visual Studio used by the Python Foundation to compile the version of Python installed. If there are multiple versions of Python then this will need to be done with each different version of Visual Studio used.
- Compile and install Python using the same tools used by choice, such as MinGW or Msys2.
Do not use the official Windows installer for Python unless following the first method.
In this type of situation it may even be for the best to accept that there are less limitations on permissive software than free software and simply opt to use a recent version of the Community Edition of Microsoft Visual Studio to compile and build all of it, no matter what.
Investigations into the extent or the limitations of this issue are ongoing.
CFFI is the Best™ and GPGME should use it instead of SWIG
There are many reasons for favouring CFFI and proponents of it are quite happy to repeat these things as if all it would take to switch from SWIG to CFFI is repeating that list as if it were a new concept.
The fact is that there are things which Python's CFFI implementation
cannot handle in the GPGME C code. Beyond that there are features of
SWIG which are simply not available with CFFI at all. SWIG generates
the bindings to Python using the gpgme.h
file, but that file is not
a single version shipped with each release, it too is generated when
GPGME is compiled.
CFFI is currently unable to adapt to such a potentially mutable codebase. If there were some means of applying SWIG's dynamic code generation to produce the Python/CFFI API modes of accessing the GPGME libraries (or the source source code directly), but such a thing does not exist yet either and it currently appears that work is needed in at least one of CFFI's dependencies before any of this can be addressed.
So if you're a massive fan of CFFI; that's great, but if you want this project to switch to CFFI then rather than just insisting that it should, I'd suggest you volunteer to bring CFFI up to the level this project needs.
If you're actually seriously considering doing so, then I'd suggest
taking the gpgme-tool.c
file in the GPGME src/
directory and
getting that to work with any of the CFFI API methods (not the ABI
methods, they'll work with pretty much anything). When you start
running into trouble with "ifdefs" then you'll know what sort of
things are lacking. That doesn't even take into account the amount of
work saved via SWIG's code generation techniques either.
Fundamentals
Before we can get to the fun stuff, there are a few matters regarding GPGME's design which hold true whether you're dealing with the C code directly or these Python bindings.
No REST
The first part of which is or will be fairly blatantly obvious upon viewing the first example, but it's worth reiterating anyway. That being that this API is not a REST API. Nor indeed could it ever be one.
Most, if not all, Python programmers (and not just Python programmers) know how easy it is to work with a RESTful API. In fact they've become so popular that many other APIs attempt to emulate REST-like behaviour as much as they are able. Right down to the use of JSON formatted output to facilitate the use of their API without having to retrain developers.
This API does not do that. It would not be able to do that and also provide access to the entire C API on which it's built. It does, however, provide a very pythonic interface on top of the direct bindings and it's this pythonic layer that this HOWTO deals with.
Context
One of the reasons which prevents this API from being RESTful is that most operations require more than one instruction to the API to perform the task. Sure, there are certain functions which can be performed simultaneously, particularly if the result known or strongly anticipated (e.g. selecting and encrypting to a key known to be in the public keybox).
There are many more, however, which cannot be manipulated so readily: they must be performed in a specific sequence and the result of one operation has a direct bearing on the outcome of subsequent operations. Not merely by generating an error either.
When dealing with this type of persistent state on the web, full of both the RESTful and REST-like, it's most commonly referred to as a session. In GPGME, however, it is called a context and every operation type has one.
Working with keys
Key selection
Selecting keys to encrypt to or to sign with will be a common occurrence when working with GPGMe and the means available for doing so are quite simple.
They do depend on utilising a Context; however once the data is recorded in another variable, that Context does not need to be the same one which subsequent operations are performed.
The easiest way to select a specific key is by searching for that key's key ID or fingerprint, preferably the full fingerprint without any spaces in it. A long key ID will probably be okay, but is not advised and short key IDs are already a problem with some being generated to match specific patterns. It does not matter whether the pattern is upper or lower case.
So this is the best method:
import gpg
k = gpg.Context().keylist(pattern="258E88DCBD3CD44D8E7AB43F6ECB6AF0DEADBEEF")
keys = list(k)
This is passable and very likely to be common:
import gpg
k = gpg.Context().keylist(pattern="0x6ECB6AF0DEADBEEF")
keys = list(k)
And this is a really bad idea:
import gpg
k = gpg.Context().keylist(pattern="0xDEADBEEF")
keys = list(k)
Alternatively it may be that the intention is to create a list of keys which all match a particular search string. For instance all the addresses at a particular domain, like this:
import gpg
ncsc = gpg.Context().keylist(pattern="ncsc.mil")
nsa = list(ncsc)
Counting keys
Counting the number of keys in your public keybox (pubring.kbx
), the
format which has superseded the old keyring format (pubring.gpg
and
secring.gpg
), or the number of secret keys is a very simple task.
import gpg
c = gpg.Context()
seckeys = c.keylist(pattern=None, secret=True)
pubkeys = c.keylist(pattern=None, secret=False)
seclist = list(seckeys)
secnum = len(seclist)
publist = list(pubkeys)
pubnum = len(publist)
print("""
Number of secret keys: {0}
Number of public keys: {1}
""".format(secnum, pubnum))
Get key
An alternative method of getting a single key via its fingerprint is
available directly within a Context with Context().get_key
. This is
the preferred method of selecting a key in order to modify it, sign or
certify it and for obtaining relevant data about a single key as a
part of other functions; when verifying a signature made by that key,
for instance.
By default this method will select public keys, but it can select secret keys as well.
This first example demonstrates selecting the current key of Werner Koch, which is due to expire at the end of 2018:
import gpg
fingerprint = "80615870F5BAD690333686D0F2AD85AC1E42B367"
key = gpg.Context().get_key(fingerprint)
Whereas this example demonstrates selecting the author's current key
with the secret
key word argument set to True
:
import gpg
fingerprint = "DB4724E6FA4286C92B4E55C4321E4E2373590E5D"
key = gpg.Context().get_key(fingerprint, secret=True)
It is, of course, quite possible to select expired, disabled and revoked keys with this function, but only to effectively display information about those keys.
It is also possible to use both unicode or string literals and byte literals with the fingerprint when getting a key in this way.
Importing keys
Importing keys is possible with the key_import()
method and takes
one argument which is a bytes literal object containing either the
binary or ASCII armoured key data for one or more keys.
The following example retrieves one or more keys from the SKS keyservers via the web using the requests module. Since requests returns the content as a bytes literal object, we can then use that directly to import the resulting data into our keybox.
import gpg
import os.path
import requests
c = gpg.Context()
url = "https://sks-keyservers.net/pks/lookup"
pattern = input("Enter the pattern to search for key or user IDs: ")
payload = { "op": "get", "search": pattern }
r = requests.get(url, verify=True, params=payload)
result = c.key_import(r.content)
if result is not None and hasattr(result, "considered") is False:
print(result)
elif result is not None and hasattr(result, "considered") is True:
num_keys = len(result.imports)
new_revs = result.new_revocations
new_sigs = result.new_signatures
new_subs = result.new_sub_keys
new_uids = result.new_user_ids
new_scrt = result.secret_imported
nochange = result.unchanged
print("""
The total number of keys considered for import was: {0}
Number of keys revoked: {1}
Number of new signatures: {2}
Number of new subkeys: {3}
Number of new user IDs: {4}
Number of new secret keys: {5}
Number of unchanged keys: {6}
The key IDs for all considered keys were:
""".format(num_keys, new_revs, new_sigs, new_subs, new_uids, new_scrt,
nochange))
for i in range(num_keys):
print("{0}\n".format(result.imports[i].fpr))
else:
pass
NOTE: When searching for a key ID of any length or a fingerprint
(without spaces), the SKS servers require the the leading 0x
indicative of hexadecimal be included. Also note that the old short
key IDs (e.g. 0xDEADBEEF
) should no longer be used due to the
relative ease by which such key IDs can be reproduced, as demonstrated
by the Evil32 Project in 2014 (which was subsequently exploited in
2016).
Here is a variation on the above which checks the constrained ProtonMail keyserver for ProtonMail public keys.
import gpg
import requests
import sys
print("""
This script searches the ProtonMail key server for the specified key and
imports it.
""")
c = gpg.Context(armor=True)
url = "https://api.protonmail.ch/pks/lookup"
ksearch = []
if len(sys.argv) >= 2:
keyterm = sys.argv[1]
else:
keyterm = input("Enter the key ID, UID or search string: ")
if keyterm.count("@") == 2 and keyterm.startswith("@") is True:
ksearch.append(keyterm[1:])
ksearch.append(keyterm[1:])
ksearch.append(keyterm[1:])
elif keyterm.count("@") == 1 and keyterm.startswith("@") is True:
ksearch.append("{0}@protonmail.com".format(keyterm[1:]))
ksearch.append("{0}@protonmail.ch".format(keyterm[1:]))
ksearch.append("{0}@pm.me".format(keyterm[1:]))
elif keyterm.count("@") == 0:
ksearch.append("{0}@protonmail.com".format(keyterm))
ksearch.append("{0}@protonmail.ch".format(keyterm))
ksearch.append("{0}@pm.me".format(keyterm))
elif keyterm.count("@") == 2 and keyterm.startswith("@") is False:
uidlist = keyterm.split("@")
for uid in uidlist:
ksearch.append("{0}@protonmail.com".format(uid))
ksearch.append("{0}@protonmail.ch".format(uid))
ksearch.append("{0}@pm.me".format(uid))
elif keyterm.count("@") > 2:
uidlist = keyterm.split("@")
for uid in uidlist:
ksearch.append("{0}@protonmail.com".format(uid))
ksearch.append("{0}@protonmail.ch".format(uid))
ksearch.append("{0}@pm.me".format(uid))
else:
ksearch.append(keyterm)
for k in ksearch:
payload = {"op": "get", "search": k}
try:
r = requests.get(url, verify=True, params=payload)
if r.ok is True:
result = c.key_import(r.content)
elif r.ok is False:
result = r.content
except Exception as e:
result = None
if result is not None and hasattr(result, "considered") is False:
print("{0} for {1}".format(result.decode(), k))
elif result is not None and hasattr(result, "considered") is True:
num_keys = len(result.imports)
new_revs = result.new_revocations
new_sigs = result.new_signatures
new_subs = result.new_sub_keys
new_uids = result.new_user_ids
new_scrt = result.secret_imported
nochange = result.unchanged
print("""
The total number of keys considered for import was: {0}
With UIDs wholely or partially matching the following string:
{1}
Number of keys revoked: {2}
Number of new signatures: {3}
Number of new subkeys: {4}
Number of new user IDs: {5}
Number of new secret keys: {6}
Number of unchanged keys: {7}
The key IDs for all considered keys were:
""".format(num_keys, k, new_revs, new_sigs, new_subs, new_uids, new_scrt,
nochange))
for i in range(num_keys):
print(result.imports[i].fpr)
print("")
elif result is None:
print(e)
Both the above example, pmkey-import.py, and a version which prompts for an alternative GnuPG home directory, pmkey-import-alt.py, are available with the other examples and are executable scripts.
Note that while the ProtonMail servers are based on the SKS servers, their server is related more to their API and is not feature complete by comparison to the servers in the SKS pool. One notable difference being that the ProtonMail server does not permit non ProtonMail users to update their own keys, which could be a vector for attacking ProtonMail users who may not receive a key's revocation if it had been compromised.
Exporting keys
Exporting keys remains a reasonably simple task, but has been separated into three different functions for the OpenPGP cryptographic engine. Two of those functions are for exporting public keys and the third is for exporting secret keys.
Exporting public keys
There are two methods of exporting public keys, both of which are very
similar to the other. The default method, key_export()
, will export
a public key or keys matching a specified pattern as normal. The
alternative, the key_export_minimal()
method, will do the same thing
except producing a minimised output with extra signatures and third
party signatures or certifications removed.
import gpg
import os.path
import sys
print("""
This script exports one or more public keys.
""")
c = gpg.Context(armor=True)
if len(sys.argv) >= 4:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = sys.argv[3]
elif len(sys.argv) == 3:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = input("Enter the GPG configuration directory path (optional): ")
elif len(sys.argv) == 2:
keyfile = sys.argv[1]
logrus = input("Enter the UID matching the key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
else:
keyfile = input("Enter the path and filename to save the secret key to: ")
logrus = input("Enter the UID matching the key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
if homedir.startswith("~"):
if os.path.exists(os.path.expanduser(homedir)) is True:
c.home_dir = os.path.expanduser(homedir)
else:
pass
elif os.path.exists(homedir) is True:
c.home_dir = homedir
else:
pass
try:
result = c.key_export(pattern=logrus)
except:
result = c.key_export(pattern=None)
if result is not None:
with open(keyfile, "wb") as f:
f.write(result)
else:
pass
It is important to note that the result will only return None
when a
pattern has been entered for logrus
, but it has not matched any
keys. When the search pattern itself is set to None
this triggers
the exporting of the entire public keybox.
import gpg
import os.path
import sys
print("""
This script exports one or more public keys in minimised form.
""")
c = gpg.Context(armor=True)
if len(sys.argv) >= 4:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = sys.argv[3]
elif len(sys.argv) == 3:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = input("Enter the GPG configuration directory path (optional): ")
elif len(sys.argv) == 2:
keyfile = sys.argv[1]
logrus = input("Enter the UID matching the key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
else:
keyfile = input("Enter the path and filename to save the secret key to: ")
logrus = input("Enter the UID matching the key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
if homedir.startswith("~"):
if os.path.exists(os.path.expanduser(homedir)) is True:
c.home_dir = os.path.expanduser(homedir)
else:
pass
elif os.path.exists(homedir) is True:
c.home_dir = homedir
else:
pass
try:
result = c.key_export_minimal(pattern=logrus)
except:
result = c.key_export_minimal(pattern=None)
if result is not None:
with open(keyfile, "wb") as f:
f.write(result)
else:
pass
Exporting secret keys
Exporting secret keys is, functionally, very similar to exporting
public keys; save for the invocation of pinentry
via gpg-agent
in
order to securely enter the key's passphrase and authorise the export.
The following example exports the secret key to a file which is then set with the same permissions as the output files created by the command line secret key export options.
import gpg
import os
import os.path
import sys
print("""
This script exports one or more secret keys.
The gpg-agent and pinentry are invoked to authorise the export.
""")
c = gpg.Context(armor=True)
if len(sys.argv) >= 4:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = sys.argv[3]
elif len(sys.argv) == 3:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = input("Enter the GPG configuration directory path (optional): ")
elif len(sys.argv) == 2:
keyfile = sys.argv[1]
logrus = input("Enter the UID matching the secret key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
else:
keyfile = input("Enter the path and filename to save the secret key to: ")
logrus = input("Enter the UID matching the secret key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
if homedir.startswith("~"):
if os.path.exists(os.path.expanduser(homedir)) is True:
c.home_dir = os.path.expanduser(homedir)
else:
pass
elif os.path.exists(homedir) is True:
c.home_dir = homedir
else:
pass
try:
result = c.key_export_secret(pattern=logrus)
except:
result = c.key_export_secret(pattern=None)
if result is not None:
with open(keyfile, "wb") as f:
f.write(result)
os.chmod(keyfile, 0o600)
else:
pass
Alternatively the approach of the following script can be used. This
longer example saves the exported secret key(s) in files in the GnuPG
home directory, in addition to setting the file permissions as only
readable and writable by the user. It also exports the secret key(s)
twice in order to output both GPG binary (.gpg
) and ASCII armoured
(.asc
) files.
import gpg
import os
import os.path
import subprocess
import sys
print("""
This script exports one or more secret keys as both ASCII armored and binary
file formats, saved in files within the user's GPG home directory.
The gpg-agent and pinentry are invoked to authorise the export.
""")
if sys.platform == "win32":
gpgconfcmd = "gpgconf.exe --list-dirs homedir"
else:
gpgconfcmd = "gpgconf --list-dirs homedir"
a = gpg.Context(armor=True)
b = gpg.Context()
c = gpg.Context()
if len(sys.argv) >= 4:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = sys.argv[3]
elif len(sys.argv) == 3:
keyfile = sys.argv[1]
logrus = sys.argv[2]
homedir = input("Enter the GPG configuration directory path (optional): ")
elif len(sys.argv) == 2:
keyfile = sys.argv[1]
logrus = input("Enter the UID matching the secret key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
else:
keyfile = input("Enter the filename to save the secret key to: ")
logrus = input("Enter the UID matching the secret key(s) to export: ")
homedir = input("Enter the GPG configuration directory path (optional): ")
if homedir.startswith("~"):
if os.path.exists(os.path.expanduser(homedir)) is True:
c.home_dir = os.path.expanduser(homedir)
else:
pass
elif os.path.exists(homedir) is True:
c.home_dir = homedir
else:
pass
if c.home_dir is not None:
if c.home_dir.endswith("/"):
gpgfile = "{0}{1}.gpg".format(c.home_dir, keyfile)
ascfile = "{0}{1}.asc".format(c.home_dir, keyfile)
else:
gpgfile = "{0}/{1}.gpg".format(c.home_dir, keyfile)
ascfile = "{0}/{1}.asc".format(c.home_dir, keyfile)
else:
if os.path.exists(os.environ["GNUPGHOME"]) is True:
hd = os.environ["GNUPGHOME"]
else:
try:
hd = subprocess.getoutput(gpgconfcmd)
except:
process = subprocess.Popen(gpgconfcmd.split(),
stdout=subprocess.PIPE)
procom = process.communicate()
if sys.version_info[0] == 2:
hd = procom[0].strip()
else:
hd = procom[0].decode().strip()
gpgfile = "{0}/{1}.gpg".format(hd, keyfile)
ascfile = "{0}/{1}.asc".format(hd, keyfile)
try:
a_result = a.key_export_secret(pattern=logrus)
b_result = b.key_export_secret(pattern=logrus)
except:
a_result = a.key_export_secret(pattern=None)
b_result = b.key_export_secret(pattern=None)
if a_result is not None:
with open(ascfile, "wb") as f:
f.write(a_result)
os.chmod(ascfile, 0o600)
else:
pass
if b_result is not None:
with open(gpgfile, "wb") as f:
f.write(b_result)
os.chmod(gpgfile, 0o600)
else:
pass
Basic Functions
The most frequently called features of any cryptographic library will be the most fundamental tasks for encryption software. In this section we will look at how to programmatically encrypt data, decrypt it, sign it and verify signatures.
Encryption
Encrypting is very straight forward. In the first example below the
message, text
, is encrypted to a single recipient's key. In the
second example the message will be encrypted to multiple recipients.
Encrypting to one key
Once the the Context is set the main issues with encrypting data is
essentially reduced to key selection and the keyword arguments
specified in the gpg.Context().encrypt()
method.
Those keyword arguments are: recipients
, a list of keys encrypted to
(covered in greater detail in the following section); sign
, whether
or not to sign the plaintext data, see subsequent sections on signing
and verifying signatures below (defaults to True
); sink
, to write
results or partial results to a secure sink instead of returning it
(defaults to None
); passphrase
, only used when utilising symmetric
encryption (defaults to None
); always_trust
, used to override the
trust model settings for recipient keys (defaults to False
);
add_encrypt_to
, utilises any preconfigured encrypt-to
or
default-key
settings in the user's gpg.conf
file (defaults to
False
); prepare
, prepare for encryption (defaults to False
);
expect_sign
, prepare for signing (defaults to False
); compress
,
compresses the plaintext prior to encryption (defaults to True
).
import gpg
a_key = "0x12345678DEADBEEF"
text = b"""Some text to test with.
Since the text in this case must be bytes, it is most likely that
the input form will be a separate file which is opened with "rb"
as this is the simplest method of obtaining the correct data format.
"""
c = gpg.Context(armor=True)
rkey = list(c.keylist(pattern=a_key, secret=False))
ciphertext, result, sign_result = c.encrypt(text, recipients=rkey, sign=False)
with open("secret_plans.txt.asc", "wb") as afile:
afile.write(ciphertext)
Though this is even more likely to be used like this; with the
plaintext input read from a file, the recipient keys used for
encryption regardless of key trust status and the encrypted output
also encrypted to any preconfigured keys set in the gpg.conf
file:
import gpg
a_key = "0x12345678DEADBEEF"
with open("secret_plans.txt", "rb") as afile:
text = afile.read()
c = gpg.Context(armor=True)
rkey = list(c.keylist(pattern=a_key, secret=False))
ciphertext, result, sign_result = c.encrypt(text, recipients=rkey, sign=True,
always_trust=True,
add_encrypt_to=True)
with open("secret_plans.txt.asc", "wb") as afile:
afile.write(ciphertext)
If the recipients
paramater is empty then the plaintext is encrypted
symmetrically. If no passphrase
is supplied as a parameter or via a
callback registered with the Context()
then an out-of-band prompt
for the passphrase via pinentry will be invoked.
Encrypting to multiple keys
Encrypting to multiple keys essentially just expands upon the key selection process and the recipients from the previous examples.
The following example encrypts a message (text
) to everyone with an
email address on the gnupg.org
domain,5 but does not encrypt
to a default key or other key which is configured to normally encrypt
to.
import gpg
text = b"""Oh look, another test message.
The same rules apply as with the previous example and more likely
than not, the message will actually be drawn from reading the
contents of a file or, maybe, from entering data at an input()
prompt.
Since the text in this case must be bytes, it is most likely that
the input form will be a separate file which is opened with "rb"
as this is the simplest method of obtaining the correct data
format.
"""
c = gpg.Context(armor=True)
rpattern = list(c.keylist(pattern="@gnupg.org", secret=False))
logrus = []
for i in range(len(rpattern)):
if rpattern[i].can_encrypt == 1:
logrus.append(rpattern[i])
ciphertext, result, sign_result = c.encrypt(text, recipients=logrus,
sign=False, always_trust=True)
with open("secret_plans.txt.asc", "wb") as afile:
afile.write(ciphertext)
All it would take to change the above example to sign the message
and also encrypt the message to any configured default keys would
be to change the c.encrypt
line to this:
ciphertext, result, sign_result = c.encrypt(text, recipients=logrus,
always_trust=True,
add_encrypt_to=True)
The only keyword arguments requiring modification are those for which
the default values are changing. The default value of sign
is
True
, the default of always_trust
is False
, the default of
add_encrypt_to
is False
.
If always_trust
is not set to True
and any of the recipient keys
are not trusted (e.g. not signed or locally signed) then the
encryption will raise an error. It is possible to mitigate this
somewhat with something more like this:
import gpg
with open("secret_plans.txt.asc", "rb") as afile:
text = afile.read()
c = gpg.Context(armor=True)
rpattern = list(c.keylist(pattern="@gnupg.org", secret=False))
logrus = []
for i in range(len(rpattern)):
if rpattern[i].can_encrypt == 1:
logrus.append(rpattern[i])
try:
ciphertext, result, sign_result = c.encrypt(text, recipients=logrus,
add_encrypt_to=True)
except gpg.errors.InvalidRecipients as e:
for i in range(len(e.recipients)):
for n in range(len(logrus)):
if logrus[n].fpr == e.recipients[i].fpr:
logrus.remove(logrus[n])
else:
pass
try:
ciphertext, result, sign_result = c.encrypt(text,
recipients=logrus,
add_encrypt_to=True)
with open("secret_plans.txt.asc", "wb") as afile:
afile.write(ciphertext)
except:
pass
This will attempt to encrypt to all the keys searched for, then remove invalid recipients if it fails and try again.
Decryption
Decrypting something encrypted to a key in one's secret keyring is fairly straight forward.
In this example code, however, preconfiguring either gpg.Context()
or gpg.core.Context()
as c
is unnecessary because there is no need
to modify the Context prior to conducting the decryption and since the
Context is only used once, setting it to c
simply adds lines for no
gain.
import gpg
ciphertext = input("Enter path and filename of encrypted file: ")
newfile = input("Enter path and filename of file to save decrypted data to: ")
with open(ciphertext, "rb") as cfile:
try:
plaintext, result, verify_result = gpg.Context().decrypt(cfile)
except gpg.errors.GPGMEError as e:
plaintext = None
print(e)
if plaintext is not None:
with open(newfile, "wb") as nfile:
nfile.write(plaintext)
else:
pass
The data available in plaintext
in this example is the decrypted
content as a byte object, the recipient key IDs and algorithms in
result
and the results of verifying any signatures of the data in
verify_result
.
Signing text and files
The following sections demonstrate how to specify keys to sign with.
Signing key selection
By default GPGME and the Python bindings will use the default key configured for the user invoking the GPGME API. If there is no default key specified and there is more than one secret key available it may be necessary to specify the key or keys with which to sign messages and files.
import gpg
logrus = input("Enter the email address or string to match signing keys to: ")
hancock = gpg.Context().keylist(pattern=logrus, secret=True)
sig_src = list(hancock)
The signing examples in the following sections include the explicitly
designated signers
parameter in two of the five examples; once where
the resulting signature would be ASCII armoured and once where it
would not be armoured.
While it would be possible to enter a key ID or fingerprint here to match a specific key, it is not possible to enter two fingerprints and match two keys since the patten expects a string, bytes or None and not a list. A string with two fingerprints won't match any single key.
Normal or default signing messages or files
The normal or default signing process is essentially the same as is most often invoked when also encrypting a message or file. So when the encryption component is not utilised, the result is to produce an encoded and signed output which may or may not be ASCII armoured and which may or may not also be compressed.
By default compression will be used unless GnuPG detects that the
plaintext is already compressed. ASCII armouring will be determined
according to the value of gpg.Context().armor
.
The compression algorithm is selected in much the same way as the symmetric encryption algorithm or the hash digest algorithm is when multiple keys are involved; from the preferences saved into the key itself or by comparison with the preferences with all other keys involved.
import gpg
text0 = """Declaration of ... something.
"""
text = text0.encode()
c = gpg.Context(armor=True, signers=sig_src)
signed_data, result = c.sign(text, mode=gpg.constants.sig.mode.NORMAL)
with open("/path/to/statement.txt.asc", "w") as afile:
afile.write(signed_data.decode())
Though everything in this example is accurate, it is more likely that reading the input data from another file and writing the result to a new file will be performed more like the way it is done in the next example. Even if the output format is ASCII armoured.
import gpg
with open("/path/to/statement.txt", "rb") as tfile:
text = tfile.read()
c = gpg.Context()
signed_data, result = c.sign(text, mode=gpg.constants.sig.mode.NORMAL)
with open("/path/to/statement.txt.sig", "wb") as afile:
afile.write(signed_data)
Detached signing messages and files
Detached signatures will often be needed in programmatic uses of GPGME, either for signing files (e.g. tarballs of code releases) or as a component of message signing (e.g. PGP/MIME encoded email).
import gpg
text0 = """Declaration of ... something.
"""
text = text0.encode()
c = gpg.Context(armor=True)
signed_data, result = c.sign(text, mode=gpg.constants.sig.mode.DETACH)
with open("/path/to/statement.txt.asc", "w") as afile:
afile.write(signed_data.decode())
As with normal signatures, detached signatures are best handled as byte literals, even when the output is ASCII armoured.
import gpg
with open("/path/to/statement.txt", "rb") as tfile:
text = tfile.read()
c = gpg.Context(signers=sig_src)
signed_data, result = c.sign(text, mode=gpg.constants.sig.mode.DETACH)
with open("/path/to/statement.txt.sig", "wb") as afile:
afile.write(signed_data)
Clearsigning messages or text
Though PGP/in-line messages are no longer encouraged in favour of PGP/MIME, there is still sometimes value in utilising in-line signatures. This is where clear-signed messages or text is of value.
import gpg
text0 = """Declaration of ... something.
"""
text = text0.encode()
c = gpg.Context()
signed_data, result = c.sign(text, mode=gpg.constants.sig.mode.CLEAR)
with open("/path/to/statement.txt.asc", "w") as afile:
afile.write(signed_data.decode())
In spite of the appearance of a clear-signed message, the data handled by GPGME in signing it must still be byte literals.
import gpg
with open("/path/to/statement.txt", "rb") as tfile:
text = tfile.read()
c = gpg.Context()
signed_data, result = c.sign(text, mode=gpg.constants.sig.mode.CLEAR)
with open("/path/to/statement.txt.asc", "wb") as afile:
afile.write(signed_data)
Signature verification
Essentially there are two principal methods of verification of a signature. The first of these is for use with the normal or default signing method and for clear-signed messages. The second is for use with files and data with detached signatures.
The following example is intended for use with the default signing method where the file was not ASCII armoured:
import gpg
import time
filename = "statement.txt"
gpg_file = "statement.txt.gpg"
c = gpg.Context()
try:
data, result = c.verify(open(gpg_file))
verified = True
except gpg.errors.BadSignatures as e:
verified = False
print(e)
if verified is True:
for i in range(len(result.signatures)):
sign = result.signatures[i]
print("""Good signature from:
{0}
with key {1}
made at {2}
""".format(c.get_key(sign.fpr).uids[0].uid, sign.fpr,
time.ctime(sign.timestamp)))
else:
pass
Whereas this next example, which is almost identical would work with normal ASCII armoured files and with clear-signed files:
import gpg
import time
filename = "statement.txt"
asc_file = "statement.txt.asc"
c = gpg.Context()
try:
data, result = c.verify(open(asc_file))
verified = True
except gpg.errors.BadSignatures as e:
verified = False
print(e)
if verified is True:
for i in range(len(result.signatures)):
sign = result.signatures[i]
print("""Good signature from:
{0}
with key {1}
made at {2}
""".format(c.get_key(sign.fpr).uids[0].uid, sign.fpr,
time.ctime(sign.timestamp)))
else:
pass
In both of the previous examples it is also possible to compare the
original data that was signed against the signed data in data
to see
if it matches with something like this:
with open(filename, "rb") as afile:
text = afile.read()
if text == data:
print("Good signature.")
else:
pass
The following two examples, however, deal with detached signatures.
With his method of verification the data that was signed does not get
returned since it is already being explicitly referenced in the first
argument of c.verify
. So data
is None
and only the information
in result
is available.
import gpg
import time
filename = "statement.txt"
sig_file = "statement.txt.sig"
c = gpg.Context()
try:
data, result = c.verify(open(filename), open(sig_file))
verified = True
except gpg.errors.BadSignatures as e:
verified = False
print(e)
if verified is True:
for i in range(len(result.signatures)):
sign = result.signatures[i]
print("""Good signature from:
{0}
with key {1}
made at {2}
""".format(c.get_key(sign.fpr).uids[0].uid, sign.fpr,
time.ctime(sign.timestamp)))
else:
pass
import gpg
import time
filename = "statement.txt"
asc_file = "statement.txt.asc"
c = gpg.Context()
try:
data, result = c.verify(open(filename), open(asc_file))
verified = True
except gpg.errors.BadSignatures as e:
verified = False
print(e)
if verified is True:
for i in range(len(result.signatures)):
sign = result.signatures[i]
print("""Good signature from:
{0}
with key {1}
made at {2}
""".format(c.get_key(sign.fpr).uids[0].uid, sign.fpr,
time.ctime(sign.timestamp)))
else:
pass
Creating keys and subkeys
The one thing, aside from GnuPG itself, that GPGME depends on, of course, is the keys themselves. So it is necessary to be able to generate them and modify them by adding subkeys, revoking or disabling them, sometimes deleting them and doing the same for user IDs.
In the following examples a key will be created for the world's
greatest secret agent, Danger Mouse. Since Danger Mouse is a secret
agent he needs to be able to protect information to SECRET
level
clearance, so his keys will be 3072-bit keys.
The pre-configured gpg.conf
file which sets cipher, digest and other
preferences contains the following configuration parameters:
expert
allow-freeform-uid
allow-secret-key-import
trust-model tofu+pgp
tofu-default-policy unknown
enable-large-rsa
enable-dsa2
cert-digest-algo SHA512
default-preference-list TWOFISH CAMELLIA256 AES256 CAMELLIA192 AES192 CAMELLIA128 AES BLOWFISH IDEA CAST5 3DES SHA512 SHA384 SHA256 SHA224 RIPEMD160 SHA1 ZLIB BZIP2 ZIP Uncompressed
personal-cipher-preferences TWOFISH CAMELLIA256 AES256 CAMELLIA192 AES192 CAMELLIA128 AES BLOWFISH IDEA CAST5 3DES
personal-digest-preferences SHA512 SHA384 SHA256 SHA224 RIPEMD160 SHA1
personal-compress-preferences ZLIB BZIP2 ZIP Uncompressed
Primary key
Generating a primary key uses the create_key
method in a Context.
It contains multiple arguments and keyword arguments, including:
userid
, algorithm
, expires_in
, expires
, sign
, encrypt
,
certify
, authenticate
, passphrase
and force
. The defaults for
all of those except userid
, algorithm
, expires_in
, expires
and
passphrase
is False
. The defaults for algorithm
and
passphrase
is None
. The default for expires_in
is 0
. The
default for expires
is True
. There is no default for userid
.
If passphrase
is left as None
then the key will not be generated
with a passphrase, if passphrase
is set to a string then that will
be the passphrase and if passphrase
is set to True
then gpg-agent
will launch pinentry to prompt for a passphrase. For the sake of
convenience, these examples will keep passphrase
set to None
.
import gpg
c = gpg.Context()
c.home_dir = "~/.gnupg-dm"
userid = "Danger Mouse <dm@secret.example.net>"
dmkey = c.create_key(userid, algorithm="rsa3072", expires_in=31536000,
sign=True, certify=True)
One thing to note here is the use of setting the c.home_dir
parameter. This enables generating the key or keys in a different
location. In this case to keep the new key data created for this
example in a separate location rather than adding it to existing and
active key store data. As with the default directory, ~/.gnupg
, any
temporary or separate directory needs the permissions set to only
permit access by the directory owner. On posix systems this means
setting the directory permissions to 700.
The temp-homedir-config.py
script in the HOWTO examples directory
will create an alternative homedir with these configuration options
already set and the correct directory and file permissions.
The successful generation of the key can be confirmed via the returned
GenkeyResult
object, which includes the following data:
print("""
Fingerprint: {0}
Primary Key: {1}
Public Key: {2}
Secret Key: {3}
Sub Key: {4}
User IDs: {5}
""".format(dmkey.fpr, dmkey.primary, dmkey.pubkey, dmkey.seckey, dmkey.sub,
dmkey.uid))
Alternatively the information can be confirmed using the command line program:
bash-4.4$ gpg --homedir ~/.gnupg-dm -K
~/.gnupg-dm/pubring.kbx
----------------------
sec rsa3072 2018-03-15 [SC] [expires: 2019-03-15]
177B7C25DB99745EE2EE13ED026D2F19E99E63AA
uid [ultimate] Danger Mouse <dm@secret.example.net>
bash-4.4$
As with generating keys manually, to preconfigure expanded preferences
for the cipher, digest and compression algorithms, the gpg.conf
file
must contain those details in the home directory in which the new key
is being generated. I used a cut down version of my own gpg.conf
file in order to be able to generate this:
bash-4.4$ gpg --homedir ~/.gnupg-dm --edit-key 177B7C25DB99745EE2EE13ED026D2F19E99E63AA showpref quit
Secret key is available.
sec rsa3072/026D2F19E99E63AA
created: 2018-03-15 expires: 2019-03-15 usage: SC
trust: ultimate validity: ultimate
[ultimate] (1). Danger Mouse <dm@secret.example.net>
[ultimate] (1). Danger Mouse <dm@secret.example.net>
Cipher: TWOFISH, CAMELLIA256, AES256, CAMELLIA192, AES192, CAMELLIA128, AES, BLOWFISH, IDEA, CAST5, 3DES
Digest: SHA512, SHA384, SHA256, SHA224, RIPEMD160, SHA1
Compression: ZLIB, BZIP2, ZIP, Uncompressed
Features: MDC, Keyserver no-modify
bash-4.4$
Subkeys
Adding subkeys to a primary key is fairly similar to creating the
primary key with the create_subkey
method. Most of the arguments
are the same, but not quite all. Instead of the userid
argument
there is now a key
argument for selecting which primary key to add
the subkey to.
In the following example an encryption subkey will be added to the primary key. Since Danger Mouse is a security conscious secret agent, this subkey will only be valid for about six months, half the length of the primary key.
import gpg
c = gpg.Context()
c.home_dir = "~/.gnupg-dm"
key = c.get_key(dmkey.fpr, secret=True)
dmsub = c.create_subkey(key, algorithm="rsa3072", expires_in=15768000,
encrypt=True)
As with the primary key, the results here can be checked with:
print("""
Fingerprint: {0}
Primary Key: {1}
Public Key: {2}
Secret Key: {3}
Sub Key: {4}
User IDs: {5}
""".format(dmsub.fpr, dmsub.primary, dmsub.pubkey, dmsub.seckey, dmsub.sub,
dmsub.uid))
As well as on the command line with:
bash-4.4$ gpg --homedir ~/.gnupg-dm -K
~/.gnupg-dm/pubring.kbx
----------------------
sec rsa3072 2018-03-15 [SC] [expires: 2019-03-15]
177B7C25DB99745EE2EE13ED026D2F19E99E63AA
uid [ultimate] Danger Mouse <dm@secret.example.net>
ssb rsa3072 2018-03-15 [E] [expires: 2018-09-13]
bash-4.4$
User IDs
Adding User IDs
By comparison to creating primary keys and subkeys, adding a new user
ID to an existing key is much simpler. The method used to do this is
key_add_uid
and the only arguments it takes are for the key
and
the new uid
.
import gpg
c = gpg.Context()
c.home_dir = "~/.gnupg-dm"
dmfpr = "177B7C25DB99745EE2EE13ED026D2F19E99E63AA"
key = c.get_key(dmfpr, secret=True)
uid = "Danger Mouse <danger.mouse@secret.example.net>"
c.key_add_uid(key, uid)
Unsurprisingly the result of this is:
bash-4.4$ gpg --homedir ~/.gnupg-dm -K
~/.gnupg-dm/pubring.kbx
----------------------
sec rsa3072 2018-03-15 [SC] [expires: 2019-03-15]
177B7C25DB99745EE2EE13ED026D2F19E99E63AA
uid [ultimate] Danger Mouse <danger.mouse@secret.example.net>
uid [ultimate] Danger Mouse <dm@secret.example.net>
ssb rsa3072 2018-03-15 [E] [expires: 2018-09-13]
bash-4.4$
Revokinging User IDs
Revoking a user ID is a fairly similar process, except that it uses
the key_revoke_uid
method.
import gpg
c = gpg.Context()
c.home_dir = "~/.gnupg-dm"
dmfpr = "177B7C25DB99745EE2EE13ED026D2F19E99E63AA"
key = c.get_key(dmfpr, secret=True)
uid = "Danger Mouse <danger.mouse@secret.example.net>"
c.key_revoke_uid(key, uid)
Key certification
Since key certification is more frequently referred to as key signing,
the method used to perform this function is key_sign
.
The key_sign
method takes four arguments: key
, uids
,
expires_in
and local
. The default value of uids
is None
and
which results in all user IDs being selected. The default value of
both expires_in
and local
is False
; which results in the
signature never expiring and being able to be exported.
The key
is the key being signed rather than the key doing the
signing. To change the key doing the signing refer to the signing key
selection above for signing messages and files.
If the uids
value is not None
then it must either be a string to
match a single user ID or a list of strings to match multiple user
IDs. In this case the matching of those strings must be precise and
it is case sensitive.
To sign Danger Mouse's key for just the initial user ID with a signature which will last a little over a month, do this:
import gpg
c = gpg.Context()
uid = "Danger Mouse <dm@secret.example.net>"
dmfpr = "177B7C25DB99745EE2EE13ED026D2F19E99E63AA"
key = c.get_key(dmfpr, secret=True)
c.key_sign(key, uids=uid, expires_in=2764800)
Advanced or Experimental Use Cases
C plus Python plus SWIG plus Cython
In spite of the apparent incongruence of using Python bindings to a C interface only to generate more C from the Python; it is in fact quite possible to use the GPGME bindings with Cython. Though in many cases the benefits may not be obvious since the most computationally intensive work never leaves the level of the C code with which GPGME itself is interacting with.
Nevertheless, there are some situations where the benefits are
demonstrable. One of the better and easier examples being the one of
the early examples in this HOWTO, the key counting code. Running that
example as an executable Python script, keycount.py
(available in
the examples/howto/
directory), will take a noticable amount of time
to run on most systems where the public keybox or keyring contains a
few thousand public keys.
Earlier in the evening, prior to starting this section, I ran that
script on my laptop; as I tend to do periodically and timed it using
time
utility, with the following results:
bash-4.4$ time keycount.py
Number of secret keys: 23
Number of public keys: 12112
real 11m52.945s
user 0m0.913s
sys 0m0.752s
bash-4.4$
Sometime after that I imported another key and followed it with a
little test of Cython. This test was kept fairly basic, essentially
lifting the material from the Cython Basic Tutorial to demonstrate
compiling Python code to C. The first step was to take the example
key counting code quoted previously, essentially from the importing of
the gpg
module to the end of the script:
import gpg
c = gpg.Context()
seckeys = c.keylist(pattern=None, secret=True)
pubkeys = c.keylist(pattern=None, secret=False)
seclist = list(seckeys)
secnum = len(seclist)
publist = list(pubkeys)
pubnum = len(publist)
print("""
Number of secret keys: {0}
Number of public keys: {1}
""".format(secnum, pubnum))
Save that into a file called keycount.pyx
and then create a
setup.py
file which contains this:
from distutils.core import setup
from Cython.Build import cythonize
setup(
ext_modules = cythonize("keycount.pyx")
)
Compile it:
bash-4.4$ python setup.py build_ext --inplace
bash-4.4$
Then run it in a similar manner to keycount.py
:
bash-4.4$ time python3.7 -c "import keycount"
Number of secret keys: 23
Number of public keys: 12113
real 6m47.905s
user 0m0.785s
sys 0m0.331s
bash-4.4$
Cython turned keycount.pyx
into an 81KB keycount.o
file in the
build/
directory, a 24KB keycount.cpython-37m-darwin.so
file to be
imported into Python 3.7 and a 113KB keycount.c
generated C source
code file of nearly three thousand lines. Quite a bit bigger than the
314 bytes of the keycount.pyx
file or the full 1,452 bytes of the
full executable keycount.py
example script.
On the other hand it ran in nearly half the time; taking 6 minutes and 47.905 seconds to run. As opposed to the 11 minutes and 52.945 seconds which the CPython script alone took.
The keycount.pyx
and setup.py
files used to generate this example
have been added to the examples/howto/advanced/cython/
directory
The example versions include some additional options to annotate the
existing code and to detect Cython's use. The latter comes from the
Magic Attributes section of the Cython documentation.
Miscellaneous work-arounds
Group lines
There is not yet an easy way to access groups configured in the gpg.conf file from within GPGME. As a consequence these central groupings of keys cannot be shared amongst multiple programs, such as MUAs readily.
The following code, however, provides a work-around for obtaining this information in Python.
import subprocess
import sys
if sys.platform == "win32":
gpgconfcmd = "gpgconf.exe --list-options gpg"
else:
gpgconfcmd = "gpgconf --list-options gpg"
try:
lines = subprocess.getoutput(gpgconfcmd).splitlines()
except:
process = subprocess.Popen(gpgconfcmd.split(), stdout=subprocess.PIPE)
procom = process.communicate()
if sys.version_info[0] == 2:
lines = procom[0].splitlines()
else:
lines = procom[0].decode().splitlines()
for i in range(len(lines)):
if lines[i].startswith("group") is True:
line = lines[i]
else:
pass
groups = line.split(":")[-1].replace('"', '').split(',')
group_lines = []
group_lists = []
for i in range(len(groups)):
group_lines.append(groups[i].split("="))
group_lists.append(groups[i].split("="))
for i in range(len(group_lists)):
group_lists[i][1] = group_lists[i][1].split()
The result of that code is that group_lines
is a list of lists where
group_lines[i][0]
is the name of the group and group_lines[i][1]
is the key IDs of the group as a string.
The group_lists
result is very similar in that it is a list of
lists. The first part, group_lists[i][0]
matches
group_lines[i][0]
as the name of the group, but group_lists[i][1]
is the key IDs of the group as a string.
A demonstration of using the groups.py
module is also available in
the form of the executable mutt-groups.py
script. This second
script reads all the group entries in a user's gpg.conf
file and
converts them into crypt-hooks suitable for use with the Mutt and
Neomutt mail clients.
Copyright and Licensing
Copyright
Copyright © The GnuPG Project, 2018.
Copyright (C) The GnuPG Project, 2018.
Draft Editions of this HOWTO
Draft editions of this HOWTO may be periodically available directly from the author at any of the following URLs:
- GPGME Python Bindings HOWTO draft (XHTML AWS S3 SSL)
- GPGME Python Bindings HOWTO draft (XHTML AWS S3 no SSL)
- GPGME Python Bindings HOWTO draft (Texinfo file AWS S3 SSL)
- GPGME Python Bindings HOWTO draft (Texinfo file AWS S3 no SSL)
- GPGME Python Bindings HOWTO draft (Info file AWS S3 SSL)
- GPGME Python Bindings HOWTO draft (Info file AWS S3 no SSL)
- GPGME Python Bindings HOWTO draft (Docbook 4.2 AWS S3 SSL)
- GPGME Python Bindings HOWTO draft (Docbook 4.2 AWS S3 no SSL)
All of these draft versions are generated from this document via Emacs Org mode and GNU Texinfo. Though it is likely that the specific file version used will be on the same server with the generated output formats.
In addition to these there is a significantly less frequently updated version as a HTML WebHelp site (AWS S3 SSL); generated from DITA XML source files, which can be found in an alternative branch of the GPGME git repository.
These draft editions are not official documents and the version of documentation in the master branch or which ships with released versions is the only official documentation. Nevertheless, these draft editions may occasionally be of use by providing more accessible web versions which are updated between releases. They are provided on the understanding that they may contain errors or may contain content subject to change prior to an official release.
License GPL compatible
This file is free software; as a special exception the author gives unlimited permission to copy and/or distribute it, with or without modifications, as long as this notice is preserved.
This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY, to the extent permitted by law; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Footnotes
Short_History.org
and/or Short_History.html
.
The lang/python/docs/
directory in the GPGME source.
As Python 3.7 is a very recent release, it is not given priority over 3.6 yet, but will probably be prioritised by the release of Python 3.7.2.
Yes, even if you use virtualenv with everything you do in Python. If you want to install this module as just your user account then you will need to manually configure, compile and install the entire GnuPG stack as that user as well. This includes libraries which are not often installed that way. It can be done and there are circumstances under which it is worthwhile, but generally only on POSIX systems which utilise single user mode (some even require it).
You probably don't really want to do this. Searching the keyservers for "gnupg.org" produces over 400 results, the majority of which aren't actually at the gnupg.org domain, but just included a comment regarding the project in their key somewhere.