aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/conf-w32brg/aescrypt.asm
blob: a7afacaa14d6bef8673c6827173cbaff553b8333 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
; ---------------------------------------------------------------------------
; Copyright (c) 2002, Dr Brian Gladman, Worcester, UK.   All rights reserved.
;
; LICENSE TERMS
;
; The free distribution and use of this software in both source and binary
; form is allowed (with or without changes) provided that:
;
;   1. distributions of this source code include the above copyright
;      notice, this list of conditions and the following disclaimer;
;
;   2. distributions in binary form include the above copyright
;      notice, this list of conditions and the following disclaimer
;      in the documentation and/or other associated materials;
;
;   3. the copyright holder's name is not used to endorse products
;      built using this software without specific written permission.
;
; ALTERNATIVELY, provided that this notice is retained in full, this product
; may be distributed under the terms of the GNU General Public License (GPL),
; in which case the provisions of the GPL apply INSTEAD OF those given above.
;
; DISCLAIMER
;
; This software is provided 'as is' with no explicit or implied warranties
; in respect of its properties, including, but not limited to, correctness
; and/or fitness for purpose.
; ---------------------------------------------------------------------------
; Issue 30/06/2004

; An AES implementation for Pentium processors using the NASM assembler (see
; <http://sourceforge.net/projects/nasm>).This version provides the standard
; AES block length (128 bits, 16 bytes) with the same interface as that used
; in my C implementation.  The eax, ecx and edx registers and the artihmetic
; status flags are not preserved.   The ebx, esi, edi, and ebp registers are
; preserved across calls.  Only encryption and decryption are provided here,
; here, the key scheduling code being that in aeskey.c compiled with USE_ASM
; defined. This code uses the VC++ register saving conentions; if it is used
; with another compiler, its conventions for using and saving registers will
; need to be checked (and calling conventions).    The NASM command line for
; the VC++ custom build step is:
;
;    nasm -O2 -f win32 -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"

    section .text ; use32

; aes_rval aes_encrypt(const unsigned char in_blk[],
;                   unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
; aes_rval aes_decrypt(const unsigned char in_blk[],
;                   unsigned char out_blk[], const aes_decrypt_ctx cx[1]);

; Comment in/out the following lines to obtain the desired subroutines. These
; selections MUST match those in the C header file aes.h

%define AES_128     ; define if AES with 128 bit keys is needed
%define AES_192     ; define if AES with 192 bit keys is needed
%define AES_256     ; define if AES with 256 bit keys is needed
%define AES_VAR     ; define if a variable key size is needed
%define ENCRYPTION  ; define if encryption is needed
%define DECRYPTION  ; define if decryption is needed
%define AES_REV_DKS ; define if key decryption schedule is reversed

; The DLL interface must use the _stdcall convention in which the number
; of bytes of parameter space is added after an @ to the sutine's name.
; We must also remove our parameters from the stack before return (see
; the do_ret macro). Define AES_DLL for the Dynamic Link Library version.

;%define AES_DLL

; End of user defines

%ifdef AES_VAR
%define KS_LENGTH       60
%elifdef AES_256
%define KS_LENGTH       60
%elifdef AES_192
%define KS_LENGTH       52
%else
%define KS_LENGTH       44
%endif

%define xf(x)   (-16*x)

%ifdef AES_REV_DKS
%define xi(x)   (-16*x)
%else
%define xi(x)    (16*x)
%endif

tlen    equ  1024   ; length of each of 4 'xor' arrays (256 32-bit words)

; offsets to parameters with one register pushed onto stack

in_blk  equ     4   ; input byte array address parameter
out_blk equ     8   ; output byte array address parameter

ctx     equ    12   ; AES context structure

stk_spc equ    24   ; stack space

; register mapping for encrypt and decrypt subroutines

%define r0  eax
%define r1  ebx
%define r2  esi
%define r3  edi
%define r4  ecx
%define r5  edx
%define r6  ebp

%define eaxl  al
%define eaxh  ah
%define ebxl  bl
%define ebxh  bh
%define ecxl  cl
%define ecxh  ch
%define edxl  dl
%define edxh  dh

; These macros take a 32-bit word representing a column and use each
; of its 4 bytes to index a table of 256 32-bit words which are xored
; into each of the four output columns. The output values are in the
; registers %1, %2, %3 and %4 and the column input is in %5 with %6
; as a scratch register.

; Parameters:
;   %1  out_state[0]
;   %2  out_state[1]
;   %3  out_state[2]
;   %4  out_state[3]
;   %5  input register for the round (destroyed)
;   %6  scratch register for the round
;   %7  key schedule address for round (in form r6 + offset)

%macro do_fcol 8            ; first column forward round

    movzx   %6,%5l
    mov     %1,[%8]
    xor     %1,[4*%6+%7]
    movzx   %6,%5h
    shr     %5,16
    mov     %2,[%8+12]
    xor     %2,[4*%6+%7+tlen]
    movzx   %6,%5l
    mov     %3,[%8+ 8]
    xor     %3,[4*%6+%7+2*tlen]
    movzx   %6,%5h
    mov     %5,%4           ; save an input register value
    mov     %4,[%8+ 4]
    xor     %4,[4*%6+%7+3*tlen]

%endmacro

%macro do_icol 8            ; first column for inverse round

    movzx   %6,%5l
    mov     %1,[%8]
    xor     %1,[4*%6+%7]
    movzx   %6,%5h
    shr     %5,16
    mov     %2,[%8+ 4]
    xor     %2,[4*%6+%7+tlen]
    movzx   %6,%5l
    mov     %3,[%8+ 8]
    xor     %3,[4*%6+%7+2*tlen]
    movzx   %6,%5h
    mov     %5,%4           ; save an input register value
    mov     %4,[%8+12]
    xor     %4,[4*%6+%7+3*tlen]

%endmacro

%macro do_col   7           ; other columns for forward and inverse rounds

    movzx   %6,%5l
    xor     %1,[4*%6+%7]
    movzx   %6,%5h
    shr     %5,16
    xor     %2,[4*%6+%7+tlen]
    movzx   %6,%5l
    xor     %3,[4*%6+%7+2*tlen]
    movzx   %6,%5h
    xor     %4,[4*%6+%7+3*tlen]

%endmacro

; These macros implement stack based local variables

%macro  save 2
    mov     [esp+4*%1],%2
%endmacro

%macro  restore 2
    mov     %1,[esp+4*%2]
%endmacro

; This macro performs a forward encryption cycle. It is entered with
; the first previous round column values in r0, r1, r2 and r3 and
; exits with the final values in the same registers.

%macro fwd_rnd 1-2 _t_fn                ; normal forward rounds

    mov     r4,r0
    save    0,r2
    save    1,r3

; compute new column values

    do_fcol r0,r3,r2,r1, r4,r5, %2, %1  ; r4 = input r0
    do_col  r1,r0,r3,r2, r4,r5, %2      ; r4 = input r1 (saved in do_fcol)
    restore r4,0
    do_col  r2,r1,r0,r3, r4,r5, %2      ; r4 = input r2
    restore r4,1
    do_col  r3,r2,r1,r0, r4,r5, %2      ; r4 = input r3

%endmacro

; This macro performs an inverse encryption cycle. It is entered with
; the first previous round column values in r0, r1, r2 and r3 and
; exits with the final values in the same registers.

%macro inv_rnd 1-2 _t_in                ; normal inverse round

    mov     r4,r0
    save    0,r1
    save    1,r2

; compute new column values

    do_icol r0,r1,r2,r3, r4,r5, %2, %1  ; r4 = r0
    do_col  r3,r0,r1,r2, r4,r5, %2      ; r4 = r3 (saved in do_icol)
    restore r4,1
    do_col  r2,r3,r0,r1, r4,r5, %2      ; r4 = r2
    restore r4,0
    do_col  r1,r2,r3,r0, r4,r5, %2      ; r4 = r1

%endmacro

; the DLL has to implement the _stdcall calling interface on return
; In this case we have to take our parameters (3 4-byte pointers)
; off the stack

%define parms 12

%macro  do_ret  0-1 parms
%ifdef AES_DLL
    ret %1
%else
    ret
%endif
%endmacro

%macro  do_name 1-2 parms
%ifndef AES_DLL
    global  %1
%1:
%else
    global  %1@%2
    export  %1@%2
%1@%2:
%endif
%endmacro

; AES Encryption Subroutine

%ifdef  ENCRYPTION

    extern  _t_fn
    extern  _t_fl

    do_name _aes_encrypt

    sub     esp,stk_spc
    mov     [esp+20],ebp
    mov     [esp+16],ebx
    mov     [esp+12],esi
    mov     [esp+ 8],edi

    mov     r6,[esp+ctx+stk_spc]    ; key pointer
    movzx   r0,byte [r6+4*KS_LENGTH]
    add     r6,r0
    mov     [r6+16],al              ; r0 = eax

; input four columns and xor in first round key

    mov     r4,[esp+in_blk+stk_spc] ; input pointer
    mov     r0,[r4   ]
    mov     r1,[r4+ 4]
    mov     r2,[r4+ 8]
    mov     r3,[r4+12]

    movzx   r5,byte[r6+16]
    lea     r4,[r4+16]
    neg     r5

    lea     r4,[r5+r6]
    xor     r0,[r4   ]
    xor     r1,[r4+ 4]
    xor     r2,[r4+ 8]
    xor     r3,[r4+12]

; determine the number of rounds

    cmp     r5,-10*16
    je      .3
    cmp     r5,-12*16
    je      .2
    cmp     r5,-14*16
    je      .1
    mov     eax,-1
    jmp     .5

.1: fwd_rnd r6+xf(13)       ; 14 rounds for 256-bit key
    fwd_rnd r6+xf(12)
.2: fwd_rnd r6+xf(11)       ; 12 rounds for 192-bit key
    fwd_rnd r6+xf(10)
.3: fwd_rnd r6+xf( 9)       ; 10 rounds for 128-bit key
    fwd_rnd r6+xf( 8)
    fwd_rnd r6+xf( 7)
    fwd_rnd r6+xf( 6)
    fwd_rnd r6+xf( 5)
    fwd_rnd r6+xf( 4)
    fwd_rnd r6+xf( 3)
    fwd_rnd r6+xf( 2)
    fwd_rnd r6+xf( 1)
    fwd_rnd r6+xf( 0),_t_fl ; last round uses a different table

; move final values to the output array

    mov     r4,[esp+out_blk+stk_spc]
    mov     [r4+12],r3
    mov     [r4+8],r2
    mov     [r4+4],r1
    mov     [r4],r0

.5: mov     ebp,[esp+20]
    mov     ebx,[esp+16]
    mov     esi,[esp+12]
    mov     edi,[esp+ 8]
    lea     esp,[esp+stk_spc]
    do_ret

%endif

; AES Decryption Subroutine

%ifdef  DECRYPTION

    extern  _t_in
    extern  _t_il

    do_name _aes_decrypt

    sub     esp,stk_spc
    mov     [esp+20],ebp
    mov     [esp+16],ebx
    mov     [esp+12],esi
    mov     [esp+ 8],edi

    mov     r6,[esp+ctx+stk_spc]    ; key pointer
%ifdef  AES_REV_DKS
    movzx   r0,byte[r6+4*KS_LENGTH]
    add     r6,r0
    mov     [r6+16],al              ; r0 = eax
%endif

; input four columns and xor in first round key

    mov     r4,[esp+in_blk+stk_spc] ; input pointer
    mov     r0,[r4   ]
    mov     r1,[r4+ 4]
    mov     r2,[r4+ 8]
    mov     r3,[r4+12]
    lea     r4,[r4+16]

%ifdef  AES_REV_DKS
    movzx   r5,byte[r6+16]
    neg     r5
    lea     r4,[r6+r5]
%else
    movzx   r5,byte[r6+4*KS_LENGTH]
    lea     r4,[r6+r5]
    neg     r5
%endif
    xor     r0,[r4   ]
    xor     r1,[r4+ 4]
    xor     r2,[r4+ 8]
    xor     r3,[r4+12]

; determine the number of rounds

    cmp     r5,-10*16
    je      .3
    cmp     r5,-12*16
    je      .2
    cmp     r5,-14*16
    je      .1
    mov     eax,-1
    jmp     .5

.1: inv_rnd r6+xi(13)       ; 14 rounds for 256-bit key
    inv_rnd r6+xi(12)
.2: inv_rnd r6+xi(11)       ; 12 rounds for 192-bit key
    inv_rnd r6+xi(10)
.3: inv_rnd r6+xi( 9)       ; 10 rounds for 128-bit key
    inv_rnd r6+xi( 8)
    inv_rnd r6+xi( 7)
    inv_rnd r6+xi( 6)
    inv_rnd r6+xi( 5)
    inv_rnd r6+xi( 4)
    inv_rnd r6+xi( 3)
    inv_rnd r6+xi( 2)
    inv_rnd r6+xi( 1)
    inv_rnd r6+xi( 0),_t_il ; last round uses a different table

; move final values to the output array.

    mov     r4,[esp+out_blk+stk_spc]
    mov     [r4+12],r3
    mov     [r4+8],r2
    mov     [r4+4],r1
    mov     [r4],r0

.5: mov     ebp,[esp+20]
    mov     ebx,[esp+16]
    mov     esi,[esp+12]
    mov     edi,[esp+ 8]
    lea     esp,[esp+stk_spc]
    do_ret

%endif

    end