diff options
Diffstat (limited to 'scripts/conf-w32brg/cipher')
-rw-r--r-- | scripts/conf-w32brg/cipher/aes.h | 158 | ||||
-rw-r--r-- | scripts/conf-w32brg/cipher/aescrypt.asm | 404 | ||||
-rw-r--r-- | scripts/conf-w32brg/cipher/aescrypt.c | 311 | ||||
-rw-r--r-- | scripts/conf-w32brg/cipher/aeskey.c | 463 | ||||
-rw-r--r-- | scripts/conf-w32brg/cipher/aesopt.h | 1042 | ||||
-rw-r--r-- | scripts/conf-w32brg/cipher/aestab.c | 232 | ||||
-rw-r--r-- | scripts/conf-w32brg/cipher/rijndael2.c | 279 |
7 files changed, 0 insertions, 2889 deletions
diff --git a/scripts/conf-w32brg/cipher/aes.h b/scripts/conf-w32brg/cipher/aes.h deleted file mode 100644 index 1bec72059..000000000 --- a/scripts/conf-w32brg/cipher/aes.h +++ /dev/null @@ -1,158 +0,0 @@ -/* - --------------------------------------------------------------------------- - Copyright (c) 2003, Dr Brian Gladman <[email protected]>, Worcester, UK. - All rights reserved. - - LICENSE TERMS - - The free distribution and use of this software in both source and binary - form is allowed (with or without changes) provided that: - - 1. distributions of this source code include the above copyright - notice, this list of conditions and the following disclaimer; - - 2. distributions in binary form include the above copyright - notice, this list of conditions and the following disclaimer - in the documentation and/or other associated materials; - - 3. the copyright holder's name is not used to endorse products - built using this software without specific written permission. - - ALTERNATIVELY, provided that this notice is retained in full, this product - may be distributed under the terms of the GNU General Public License (GPL), - in which case the provisions of the GPL apply INSTEAD OF those given above. - - DISCLAIMER - - This software is provided 'as is' with no explicit or implied warranties - in respect of its properties, including, but not limited to, correctness - and/or fitness for purpose. - --------------------------------------------------------------------------- - Issue Date: 1/06/2003 - - This file contains the definitions required to use AES in C. See aesopt.h - for optimisation details. -*/ - -#ifndef _AES_H -#define _AES_H - -#if defined(__cplusplus) -extern "C" -{ -#endif - -#define AES_128 /* define if AES with 128 bit keys is needed */ -#define AES_192 /* define if AES with 192 bit keys is needed */ -#define AES_256 /* define if AES with 256 bit keys is needed */ -#define AES_VAR /* define if a variable key size is needed */ - -/* The following must also be set in assembler files if being used */ - -#define AES_ENCRYPT /* if support for encryption is needed */ -#define AES_DECRYPT /* if support for decryption is needed */ -#define AES_ERR_CHK /* for parameter checks & error return codes */ - -/* This include is used to find 8 & 32 bit unsigned integer types */ -#include "limits.h" - -#if UCHAR_MAX == 0xff /* an unsigned 8 bit type */ - typedef unsigned char aes_08t; -#else -#error Please define aes_08t as an 8-bit unsigned integer type in aes.h -#endif - -#if UINT_MAX == 0xffffffff /* an unsigned 32 bit type */ - typedef unsigned int aes_32t; -#elif ULONG_MAX == 0xffffffff - typedef unsigned long aes_32t; -#else -#error Please define aes_32t as a 32-bit unsigned integer type in aes.h -#endif - -#define AES_BLOCK_SIZE 16 /* the AES block size in bytes */ -#define N_COLS 4 /* the number of columns in the state */ - -/* a maximum of 60 32-bit words are needed for the key schedule but */ -/* 64 are claimed to allow space at the top for a CBC xor buffer. */ -/* If this is not needed, this value can be reduced to 60. A value */ -/* of 64 may also help in maintaining alignment in some situations */ -#define KS_LENGTH 64 - -#ifdef AES_ERR_CHK -#define aes_ret int -#define aes_good 0 -#define aes_error -1 -#else -#define aes_ret void -#endif - -#ifndef AES_DLL /* implement normal/DLL functions */ -#define aes_rval aes_ret -#else -#define aes_rval aes_ret __declspec(dllexport) _stdcall -#endif - -/* This routine must be called before first use if non-static */ -/* tables are being used */ - -void gen_tabs(void); - -/* The key length (klen) is input in bytes when it is in the range */ -/* 16 <= klen <= 32 or in bits when in the range 128 <= klen <= 256 */ - -#ifdef AES_ENCRYPT - -typedef struct -{ aes_32t ks[KS_LENGTH]; -} aes_encrypt_ctx; - -#if defined(AES_128) || defined(AES_VAR) -aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]); -#endif - -#if defined(AES_192) || defined(AES_VAR) -aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]); -#endif - -#if defined(AES_256) || defined(AES_VAR) -aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]); -#endif - -#if defined(AES_VAR) -aes_rval aes_encrypt_key(const void *in_key, int key_len, aes_encrypt_ctx cx[1]); -#endif - -aes_rval aes_encrypt(const void *in_blk, void *out_blk, const aes_encrypt_ctx cx[1]); -#endif - -#ifdef AES_DECRYPT - -typedef struct -{ aes_32t ks[KS_LENGTH]; -} aes_decrypt_ctx; - -#if defined(AES_128) || defined(AES_VAR) -aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]); -#endif - -#if defined(AES_192) || defined(AES_VAR) -aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]); -#endif - -#if defined(AES_256) || defined(AES_VAR) -aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]); -#endif - -#if defined(AES_VAR) -aes_rval aes_decrypt_key(const void *in_key, int key_len, aes_decrypt_ctx cx[1]); -#endif - -aes_rval aes_decrypt(const void *in_blk, void *out_blk, const aes_decrypt_ctx cx[1]); -#endif - -#if defined(__cplusplus) -} -#endif - -#endif diff --git a/scripts/conf-w32brg/cipher/aescrypt.asm b/scripts/conf-w32brg/cipher/aescrypt.asm deleted file mode 100644 index 90beaaabf..000000000 --- a/scripts/conf-w32brg/cipher/aescrypt.asm +++ /dev/null @@ -1,404 +0,0 @@ - -; --------------------------------------------------------------------------- -; Copyright (c) 2002, Dr Brian Gladman <[email protected]>, Worcester, UK. -; All rights reserved. -; -; LICENSE TERMS -; -; The free distribution and use of this software in both source and binary -; form is allowed (with or without changes) provided that: -; -; 1. distributions of this source code include the above copyright -; notice, this list of conditions and the following disclaimer; -; -; 2. distributions in binary form include the above copyright -; notice, this list of conditions and the following disclaimer -; in the documentation and/or other associated materials; -; -; 3. the copyright holder's name is not used to endorse products -; built using this software without specific written permission. -; -; ALTERNATIVELY, provided that this notice is retained in full, this product -; may be distributed under the terms of the GNU General Public License (GPL), -; in which case the provisions of the GPL apply INSTEAD OF those given above. -; -; DISCLAIMER -; -; This software is provided 'as is' with no explicit or implied warranties -; in respect of its properties, including, but not limited to, correctness -; and/or fitness for purpose. -; --------------------------------------------------------------------------- -; Issue Date: 1/06/2003 - -; An AES implementation for Pentium processors using the NASM assembler (see -; <http://sourceforge.net/projects/nasm>).This version provides the standard -; AES block length (128 bits, 16 bytes) with the same interface as that used -; in my C implementation. The eax, ecx and edx registers and the artihmetic -; status flags are not preserved. The ebx, esi, edi, and ebp registers are -; preserved across calls. Only encryption and decryption are provided here, -; here, the key scheduling code being that in aeskey.c compiled with USE_ASM -; defined. This code uses the VC++ register saving conentions; if it is used -; with another compiler, its conventions for using and saving registers will -; need to be checked (and calling conventions). The NASM command line for -; the VC++ custom build step is: -; -; nasm -O2 -f win32 -o "$(TargetDir)\$(InputName).obj" "$(InputPath)" - - section .text ; use32 - -; aes_rval aes_encrypt(const unsigned char in_blk[], -; unsigned char out_blk[], const aes_encrypt_ctx cx[1]); -; aes_rval aes_decrypt(const unsigned char in_blk[], -; unsigned char out_blk[], const aes_decrypt_ctx cx[1]); -; -; comment in/out the following lines to obtain the desired subroutines - -%define ENCRYPTION ; define if encryption is needed -%define DECRYPTION ; define if decryption is needed - -; The DLL interface must use the _stdcall convention in which the number -; of bytes of parameter space is added after an @ to the sutine's name. -; We must also remove our parameters from the stack before return (see -; the do_ret macro). Define AES_DLL for the Dynamic Link Library version. - -;%define AES_DLL - -tlen: equ 1024 ; length of each of 4 'xor' arrays (256 32-bit words) - -; offsets to parameters with one register pushed onto stack - -in_blk: equ 4 ; input byte array address parameter -out_blk:equ 8 ; output byte array address parameter -ctx: equ 12 ; AES context structure -stk_spc:equ 24 ; stack space - -; register mapping for encrypt and decrypt subroutines - -%define r0 eax -%define r1 ebx -%define r2 esi -%define r3 edi -%define r4 ecx -%define r5 edx -%define r6 ebp - -%define eaxl al -%define eaxh ah -%define ebxl bl -%define ebxh bh -%define ecxl cl -%define ecxh ch -%define edxl dl -%define edxh dh - -; These macros take a 32-bit word representing a column and use each -; of its 4 bytes to index a table of 256 32-bit words which are xored -; into each of the four output columns. The output values are in the -; registers %1, %2, %3 and %4 and the column input is in %5 with %6 -; as a scratch register. - -; Parameters: -; %1 out_state[0] -; %2 out_state[1] -; %3 out_state[2] -; %4 out_state[3] -; %5 input register for the round (destroyed) -; %6 scratch register for the round -; %7 key schedule address for round (in form r6 + offset) - -%macro do_fcol 8 ; first column forward round - - movzx %6,%5l - mov %1,[%8] - xor %1,[4*%6+%7] - movzx %6,%5h - shr %5,16 - mov %2,[%8+12] - xor %2,[4*%6+%7+tlen] - movzx %6,%5l - mov %3,[%8+ 8] - xor %3,[4*%6+%7+2*tlen] - movzx %6,%5h - mov %5,%4 ; save an input register value - mov %4,[%8+ 4] - xor %4,[4*%6+%7+3*tlen] - -%endmacro - -%macro do_icol 8 ; first column for inverse round - - movzx %6,%5l - mov %1,[%8] - xor %1,[4*%6+%7] - movzx %6,%5h - shr %5,16 - mov %2,[%8+ 4] - xor %2,[4*%6+%7+tlen] - movzx %6,%5l - mov %3,[%8+ 8] - xor %3,[4*%6+%7+2*tlen] - movzx %6,%5h - mov %5,%4 ; save an input register value - mov %4,[%8+12] - xor %4,[4*%6+%7+3*tlen] - -%endmacro - -%macro do_col 7 ; other columns for forward and inverse rounds - - movzx %6,%5l - xor %1,[4*%6+%7] - movzx %6,%5h - shr %5,16 - xor %2,[4*%6+%7+tlen] - movzx %6,%5l - xor %3,[4*%6+%7+2*tlen] - movzx %6,%5h - xor %4,[4*%6+%7+3*tlen] - -%endmacro - -; These macros implement stack based local variables - -%macro save 2 - mov [esp+4*%1],%2 -%endmacro - -%macro restore 2 - mov %1,[esp+4*%2] -%endmacro - -; This macro performs a forward encryption cycle. It is entered with -; the first previous round column values in r0, r1, r2 and r3 and -; exits with the final values in the same registers. - -%macro fwd_rnd 1-2 _t_fn ; normal forward rounds - - mov r4,r0 - save 0,r2 - save 1,r3 - -; compute new column values - - do_fcol r0,r3,r2,r1, r4,r5, %2, %1 ; r4 = input r0 - do_col r1,r0,r3,r2, r4,r5, %2 ; r4 = input r1 (saved in fcol_f) - restore r4,0 - do_col r2,r1,r0,r3, r4,r5, %2 ; r4 = input r2 - restore r4,1 - do_col r3,r2,r1,r0, r4,r5, %2 ; r4 = input r3 - -%endmacro - -; This macro performs an inverse encryption cycle. It is entered with -; the first previous round column values in r0, r1, r2 and r3 and -; exits with the final values in the same registers. - -%macro inv_rnd 1-2 _t_in ; normal inverse round - - mov r4,r0 - save 0,r1 - save 1,r2 - -; compute new column values - - do_icol r0,r1,r2,r3, r4,r5, %2, %1 ; r4 = r0 - do_col r3,r0,r1,r2, r4,r5, %2 ; r4 = r3 (saved in icol_f) - restore r4,1 - do_col r2,r3,r0,r1, r4,r5, %2 ; r4 = r2 - restore r4,0 - do_col r1,r2,r3,r0, r4,r5, %2 ; r4 = r1 - -%endmacro - -; the DLL has to implement the _stdcall calling interface on return -; In this case we have to take our parameters (3 4-byte pointers) -; off the stack - -%macro do_ret 0 -%ifdef AES_DLL - ret 12 -%else - ret -%endif -%endmacro - -%macro do_name 1 -%ifndef AES_DLL - global %1 -%1: -%else - global %1@12 - export %1@12 -%1@12: -%endif -%endmacro - -; AES Encryption Subroutine - -%ifdef ENCRYPTION - - extern _t_fn - extern _t_fl - - do_name _aes_encrypt - - sub esp,stk_spc - mov [esp+20],ebp - mov [esp+16],ebx - mov [esp+12],esi - mov [esp+ 8],edi - mov r4,[esp+in_blk+stk_spc] ; input pointer - mov r6,[esp+ctx+stk_spc] ; key pointer - -; input four columns and xor in first round key - - mov r0,[r4 ] - mov r1,[r4+ 4] - xor r0,[r6 ] - xor r1,[r6+ 4] - mov r2,[r4+ 8] - mov r3,[r4+12] - xor r2,[r6+ 8] - xor r3,[r6+12] - -; determine the number of rounds - - mov r4,[r6+4*45] - mov r5,[r6+4*52] - xor r4,[r6+4*53] - xor r4,r5 - je .1 - cmp r5,10 - je .3 - cmp r5,12 - je .2 - mov ebp,[esp+20] - mov ebx,[esp+16] - mov esi,[esp+12] - mov edi,[esp+ 8] - lea esp,[esp+stk_spc] - mov eax,-1 - do_ret - -.1: fwd_rnd r6+ 16 ; 14 rounds for 256-bit key - fwd_rnd r6+ 32 - lea r6,[r6+32] -.2: fwd_rnd r6+ 16 ; 12 rounds for 192-bit key - fwd_rnd r6+ 32 - lea r6,[r6+32] -.3: fwd_rnd r6+ 16 ; 10 rounds for 128-bit key - fwd_rnd r6+ 32 - fwd_rnd r6+ 48 - fwd_rnd r6+ 64 - fwd_rnd r6+ 80 - fwd_rnd r6+ 96 - fwd_rnd r6+112 - fwd_rnd r6+128 - fwd_rnd r6+144 - fwd_rnd r6+160, _t_fl ; last round uses a different table - -; move final values to the output array - - mov r6,[esp+out_blk+stk_spc] - mov [r6+12],r3 - mov [r6+8],r2 - mov [r6+4],r1 - mov [r6],r0 - mov ebp,[esp+20] - mov ebx,[esp+16] - mov esi,[esp+12] - mov edi,[esp+ 8] - lea esp,[esp+stk_spc] - xor eax,eax - do_ret - -%endif - -; AES Decryption Subroutine - -%ifdef DECRYPTION - - extern _t_in - extern _t_il - - do_name _aes_decrypt - - sub esp,stk_spc - mov [esp+20],ebp - mov [esp+16],ebx - mov [esp+12],esi - mov [esp+ 8],edi - mov r4,[esp+in_blk+stk_spc] ; input pointer - mov r6,[esp+ctx+stk_spc] ; context pointer - -; input four columns - - mov r0,[r4] - mov r1,[r4+4] - mov r2,[r4+8] - mov r3,[r4+12] - -; determine the number of rounds - - mov r5,[r6+4*52] - mov r4,[r6+4*45] - xor r4,[r6+4*53] - xor r4,r5 - jne .1 - mov r5,14 - -; xor in initial keys - -.1: lea r4,[4*r5] - xor r0,[r6+4*r4 ] - xor r1,[r6+4*r4+ 4] - xor r2,[r6+4*r4+ 8] - xor r3,[r6+4*r4+12] - cmp r5,10 - je .3 - cmp r5,12 - je .2 - cmp r5,14 - jne .4 - - inv_rnd r6+208 ; 14 rounds for 256-bit key - inv_rnd r6+192 -.2: inv_rnd r6+176 ; 12 rounds for 192-bit key - inv_rnd r6+160 -.3: inv_rnd r6+144 ; 10 rounds for 128-bit key - inv_rnd r6+128 - inv_rnd r6+112 - inv_rnd r6+ 96 - inv_rnd r6+ 80 - inv_rnd r6+ 64 - inv_rnd r6+ 48 - inv_rnd r6+ 32 - inv_rnd r6+ 16 - inv_rnd r6, _t_il ; last round uses a different table - -; move final values to the output array. - - mov r6,[esp+out_blk+stk_spc] - mov [r6+12],r3 - mov [r6+8],r2 - mov [r6+4],r1 - mov [r6],r0 - mov ebp,[esp+20] - mov ebx,[esp+16] - mov esi,[esp+12] - mov edi,[esp+ 8] - lea esp,[esp+stk_spc] - xor eax,eax - do_ret - -.4: mov ebp,[esp+20] - mov ebx,[esp+16] - mov esi,[esp+12] - mov edi,[esp+ 8] - lea esp,[esp+stk_spc] - mov eax,-1 - do_ret - -%endif - - end diff --git a/scripts/conf-w32brg/cipher/aescrypt.c b/scripts/conf-w32brg/cipher/aescrypt.c deleted file mode 100644 index 944b0890a..000000000 --- a/scripts/conf-w32brg/cipher/aescrypt.c +++ /dev/null @@ -1,311 +0,0 @@ -/* - --------------------------------------------------------------------------- - Copyright (c) 2003, Dr Brian Gladman <[email protected]>, Worcester, UK. - All rights reserved. - - LICENSE TERMS - - The free distribution and use of this software in both source and binary - form is allowed (with or without changes) provided that: - - 1. distributions of this source code include the above copyright - notice, this list of conditions and the following disclaimer; - - 2. distributions in binary form include the above copyright - notice, this list of conditions and the following disclaimer - in the documentation and/or other associated materials; - - 3. the copyright holder's name is not used to endorse products - built using this software without specific written permission. - - ALTERNATIVELY, provided that this notice is retained in full, this product - may be distributed under the terms of the GNU General Public License (GPL), - in which case the provisions of the GPL apply INSTEAD OF those given above. - - DISCLAIMER - - This software is provided 'as is' with no explicit or implied warranties - in respect of its properties, including, but not limited to, correctness - and/or fitness for purpose. - --------------------------------------------------------------------------- - Issue Date: 1/06/2003 - - This file contains the code for implementing encryption and decryption - for AES (Rijndael) for block and key sizes of 16, 24 and 32 bytes. It - can optionally be replaced by code written in assembler using NASM. For - further details see the file aesopt.h -*/ - -#include "aesopt.h" - -#if defined(__cplusplus) -extern "C" -{ -#endif - -#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c]) -#define so(y,x,c) word_out(y, c, s(x,c)) - -#if defined(ARRAYS) -#define locals(y,x) x[4],y[4] -#else -#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3 -#endif - -#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \ - s(y,2) = s(x,2); s(y,3) = s(x,3); -#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3) -#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3) -#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3) - -#if defined(ENCRYPTION) && !defined(AES_ASM) - -/* Visual C++ .Net v7.1 provides the fastest encryption code when using - Pentium optimiation with small code but this is poor for decryption - so we need to control this with the following VC++ pragmas -*/ - -#if defined(_MSC_VER) -#pragma optimize( "s", on ) -#endif - -/* Given the column (c) of the output state variable, the following - macros give the input state variables which are needed in its - computation for each row (r) of the state. All the alternative - macros give the same end values but expand into different ways - of calculating these values. In particular the complex macro - used for dynamically variable block sizes is designed to expand - to a compile time constant whenever possible but will expand to - conditional clauses on some branches (I am grateful to Frank - Yellin for this construction) -*/ - -#define fwd_var(x,r,c)\ - ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\ - : r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\ - : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\ - : ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))) - -#if defined(FT4_SET) -#undef dec_fmvars -#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c)) -#elif defined(FT1_SET) -#undef dec_fmvars -#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c)) -#else -#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c))) -#endif - -#if defined(FL4_SET) -#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c)) -#elif defined(FL1_SET) -#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c)) -#else -#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c)) -#endif - -aes_rval aes_encrypt(const void *in_blk, void *out_blk, const aes_encrypt_ctx cx[1]) -{ aes_32t locals(b0, b1); - const aes_32t *kp = cx->ks; -#ifdef dec_fmvars - dec_fmvars; /* declare variables for fwd_mcol() if needed */ -#endif - - aes_32t nr = (kp[45] ^ kp[52] ^ kp[53] ? kp[52] : 14); - -#ifdef AES_ERR_CHK - if( (nr != 10 || !(kp[0] | kp[3] | kp[4])) - && (nr != 12 || !(kp[0] | kp[5] | kp[6])) - && (nr != 14 || !(kp[0] | kp[7] | kp[8])) ) - return aes_error; -#endif - - state_in(b0, in_blk, kp); - -#if (ENC_UNROLL == FULL) - - switch(nr) - { - case 14: - round(fwd_rnd, b1, b0, kp + 1 * N_COLS); - round(fwd_rnd, b0, b1, kp + 2 * N_COLS); - kp += 2 * N_COLS; - case 12: - round(fwd_rnd, b1, b0, kp + 1 * N_COLS); - round(fwd_rnd, b0, b1, kp + 2 * N_COLS); - kp += 2 * N_COLS; - case 10: - round(fwd_rnd, b1, b0, kp + 1 * N_COLS); - round(fwd_rnd, b0, b1, kp + 2 * N_COLS); - round(fwd_rnd, b1, b0, kp + 3 * N_COLS); - round(fwd_rnd, b0, b1, kp + 4 * N_COLS); - round(fwd_rnd, b1, b0, kp + 5 * N_COLS); - round(fwd_rnd, b0, b1, kp + 6 * N_COLS); - round(fwd_rnd, b1, b0, kp + 7 * N_COLS); - round(fwd_rnd, b0, b1, kp + 8 * N_COLS); - round(fwd_rnd, b1, b0, kp + 9 * N_COLS); - round(fwd_lrnd, b0, b1, kp +10 * N_COLS); - } - -#else - -#if (ENC_UNROLL == PARTIAL) - { aes_32t rnd; - for(rnd = 0; rnd < (nr >> 1) - 1; ++rnd) - { - kp += N_COLS; - round(fwd_rnd, b1, b0, kp); - kp += N_COLS; - round(fwd_rnd, b0, b1, kp); - } - kp += N_COLS; - round(fwd_rnd, b1, b0, kp); -#else - { aes_32t rnd; - for(rnd = 0; rnd < nr - 1; ++rnd) - { - kp += N_COLS; - round(fwd_rnd, b1, b0, kp); - l_copy(b0, b1); - } -#endif - kp += N_COLS; - round(fwd_lrnd, b0, b1, kp); - } -#endif - - state_out(out_blk, b0); -#ifdef AES_ERR_CHK - return aes_good; -#endif -} - -#endif - -#if defined(DECRYPTION) && !defined(AES_ASM) - -/* Visual C++ .Net v7.1 provides the fastest encryption code when using - Pentium optimiation with small code but this is poor for decryption - so we need to control this with the following VC++ pragmas -*/ - -#if defined(_MSC_VER) -#pragma optimize( "t", on ) -#endif - -/* Given the column (c) of the output state variable, the following - macros give the input state variables which are needed in its - computation for each row (r) of the state. All the alternative - macros give the same end values but expand into different ways - of calculating these values. In particular the complex macro - used for dynamically variable block sizes is designed to expand - to a compile time constant whenever possible but will expand to - conditional clauses on some branches (I am grateful to Frank - Yellin for this construction) -*/ - -#define inv_var(x,r,c)\ - ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\ - : r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\ - : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\ - : ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))) - -#if defined(IT4_SET) -#undef dec_imvars -#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c)) -#elif defined(IT1_SET) -#undef dec_imvars -#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c)) -#else -#define inv_rnd(y,x,k,c) (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))) -#endif - -#if defined(IL4_SET) -#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c)) -#elif defined(IL1_SET) -#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c)) -#else -#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)) -#endif - -aes_rval aes_decrypt(const void *in_blk, void *out_blk, const aes_decrypt_ctx cx[1]) -{ aes_32t locals(b0, b1); -#ifdef dec_imvars - dec_imvars; /* declare variables for inv_mcol() if needed */ -#endif - - aes_32t nr = (cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] ? cx->ks[52] : 14); - const aes_32t *kp = cx->ks + nr * N_COLS; - -#ifdef AES_ERR_CHK - if( (nr != 10 || !(cx->ks[0] | cx->ks[3] | cx->ks[4])) - && (nr != 12 || !(cx->ks[0] | cx->ks[5] | cx->ks[6])) - && (nr != 14 || !(cx->ks[0] | cx->ks[7] | cx->ks[8])) ) - return aes_error; -#endif - - state_in(b0, in_blk, kp); - -#if (DEC_UNROLL == FULL) - - switch(nr) - { - case 14: - round(inv_rnd, b1, b0, kp - 1 * N_COLS); - round(inv_rnd, b0, b1, kp - 2 * N_COLS); - kp -= 2 * N_COLS; - case 12: - round(inv_rnd, b1, b0, kp - 1 * N_COLS); - round(inv_rnd, b0, b1, kp - 2 * N_COLS); - kp -= 2 * N_COLS; - case 10: - round(inv_rnd, b1, b0, kp - 1 * N_COLS); - round(inv_rnd, b0, b1, kp - 2 * N_COLS); - round(inv_rnd, b1, b0, kp - 3 * N_COLS); - round(inv_rnd, b0, b1, kp - 4 * N_COLS); - round(inv_rnd, b1, b0, kp - 5 * N_COLS); - round(inv_rnd, b0, b1, kp - 6 * N_COLS); - round(inv_rnd, b1, b0, kp - 7 * N_COLS); - round(inv_rnd, b0, b1, kp - 8 * N_COLS); - round(inv_rnd, b1, b0, kp - 9 * N_COLS); - round(inv_lrnd, b0, b1, kp - 10 * N_COLS); - } - -#else - -#if (DEC_UNROLL == PARTIAL) - { aes_32t rnd; - for(rnd = 0; rnd < (nr >> 1) - 1; ++rnd) - { - kp -= N_COLS; - round(inv_rnd, b1, b0, kp); - kp -= N_COLS; - round(inv_rnd, b0, b1, kp); - } - kp -= N_COLS; - round(inv_rnd, b1, b0, kp); -#else - { aes_32t rnd; - for(rnd = 0; rnd < nr - 1; ++rnd) - { - kp -= N_COLS; - round(inv_rnd, b1, b0, kp); - l_copy(b0, b1); - } -#endif - kp -= N_COLS; - round(inv_lrnd, b0, b1, kp); - } -#endif - - state_out(out_blk, b0); -#ifdef AES_ERR_CHK - return aes_good; -#endif -} - -#endif - -#if defined(__cplusplus) -} -#endif diff --git a/scripts/conf-w32brg/cipher/aeskey.c b/scripts/conf-w32brg/cipher/aeskey.c deleted file mode 100644 index acc1b8899..000000000 --- a/scripts/conf-w32brg/cipher/aeskey.c +++ /dev/null @@ -1,463 +0,0 @@ -/* - --------------------------------------------------------------------------- - Copyright (c) 2003, Dr Brian Gladman <[email protected]>, Worcester, UK. - All rights reserved. - - LICENSE TERMS - - The free distribution and use of this software in both source and binary - form is allowed (with or without changes) provided that: - - 1. distributions of this source code include the above copyright - notice, this list of conditions and the following disclaimer; - - 2. distributions in binary form include the above copyright - notice, this list of conditions and the following disclaimer - in the documentation and/or other associated materials; - - 3. the copyright holder's name is not used to endorse products - built using this software without specific written permission. - - ALTERNATIVELY, provided that this notice is retained in full, this product - may be distributed under the terms of the GNU General Public License (GPL), - in which case the provisions of the GPL apply INSTEAD OF those given above. - - DISCLAIMER - - This software is provided 'as is' with no explicit or implied warranties - in respect of its properties, including, but not limited to, correctness - and/or fitness for purpose. - --------------------------------------------------------------------------- - Issue Date: 1/06/2003 - - This file contains the code for implementing the key schedule for AES - (Rijndael) for block and key sizes of 16, 24, and 32 bytes. See aesopt.h - for further details including optimisation. -*/ - -#include "aesopt.h" - -#if defined(__cplusplus) -extern "C" -{ -#endif - -/* Initialise the key schedule from the user supplied key. The key - length can be specified in bytes, with legal values of 16, 24 - and 32, or in bits, with legal values of 128, 192 and 256. These - values correspond with Nk values of 4, 6 and 8 respectively. - - The following macros implement a single cycle in the key - schedule generation process. The number of cycles needed - for each cx->n_col and nk value is: - - nk = 4 5 6 7 8 - ------------------------------ - cx->n_col = 4 10 9 8 7 7 - cx->n_col = 5 14 11 10 9 9 - cx->n_col = 6 19 15 12 11 11 - cx->n_col = 7 21 19 16 13 14 - cx->n_col = 8 29 23 19 17 14 -*/ - -#define ke4(k,i) \ -{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ - k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ -} -#define kel4(k,i) \ -{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ - k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ -} - -#define ke6(k,i) \ -{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ - k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \ - k[6*(i)+10] = ss[4] ^= ss[3]; k[6*(i)+11] = ss[5] ^= ss[4]; \ -} -#define kel6(k,i) \ -{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ - k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \ -} - -#define ke8(k,i) \ -{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ - k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \ - k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); k[8*(i)+13] = ss[5] ^= ss[4]; \ - k[8*(i)+14] = ss[6] ^= ss[5]; k[8*(i)+15] = ss[7] ^= ss[6]; \ -} -#define kel8(k,i) \ -{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ - k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \ -} - -#if defined(ENCRYPTION_KEY_SCHEDULE) - -#if defined(AES_128) || defined(AES_VAR) - -aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]) -{ aes_32t ss[4]; - - cx->ks[0] = ss[0] = word_in(in_key, 0); - cx->ks[1] = ss[1] = word_in(in_key, 1); - cx->ks[2] = ss[2] = word_in(in_key, 2); - cx->ks[3] = ss[3] = word_in(in_key, 3); - -#if ENC_UNROLL == NONE - { aes_32t i; - - for(i = 0; i < ((11 * N_COLS - 1) / 4); ++i) - ke4(cx->ks, i); - } -#else - ke4(cx->ks, 0); ke4(cx->ks, 1); - ke4(cx->ks, 2); ke4(cx->ks, 3); - ke4(cx->ks, 4); ke4(cx->ks, 5); - ke4(cx->ks, 6); ke4(cx->ks, 7); - ke4(cx->ks, 8); kel4(cx->ks, 9); -#endif - - /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */ - /* key and must be non-zero for 128 and 192 bits keys */ - cx->ks[53] = cx->ks[45] = 0; - cx->ks[52] = 10; -#ifdef AES_ERR_CHK - return aes_good; -#endif -} - -#endif - -#if defined(AES_192) || defined(AES_VAR) - -aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]) -{ aes_32t ss[6]; - - cx->ks[0] = ss[0] = word_in(in_key, 0); - cx->ks[1] = ss[1] = word_in(in_key, 1); - cx->ks[2] = ss[2] = word_in(in_key, 2); - cx->ks[3] = ss[3] = word_in(in_key, 3); - cx->ks[4] = ss[4] = word_in(in_key, 4); - cx->ks[5] = ss[5] = word_in(in_key, 5); - -#if ENC_UNROLL == NONE - { aes_32t i; - - for(i = 0; i < (13 * N_COLS - 1) / 6; ++i) - ke6(cx->ks, i); - } -#else - ke6(cx->ks, 0); ke6(cx->ks, 1); - ke6(cx->ks, 2); ke6(cx->ks, 3); - ke6(cx->ks, 4); ke6(cx->ks, 5); - ke6(cx->ks, 6); kel6(cx->ks, 7); -#endif - - /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */ - /* key and must be non-zero for 128 and 192 bits keys */ - cx->ks[53] = cx->ks[45]; - cx->ks[52] = 12; -#ifdef AES_ERR_CHK - return aes_good; -#endif -} - -#endif - -#if defined(AES_256) || defined(AES_VAR) - -aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]) -{ aes_32t ss[8]; - - cx->ks[0] = ss[0] = word_in(in_key, 0); - cx->ks[1] = ss[1] = word_in(in_key, 1); - cx->ks[2] = ss[2] = word_in(in_key, 2); - cx->ks[3] = ss[3] = word_in(in_key, 3); - cx->ks[4] = ss[4] = word_in(in_key, 4); - cx->ks[5] = ss[5] = word_in(in_key, 5); - cx->ks[6] = ss[6] = word_in(in_key, 6); - cx->ks[7] = ss[7] = word_in(in_key, 7); - -#if ENC_UNROLL == NONE - { aes_32t i; - - for(i = 0; i < (15 * N_COLS - 1) / 8; ++i) - ke8(cx->ks, i); - } -#else - ke8(cx->ks, 0); ke8(cx->ks, 1); - ke8(cx->ks, 2); ke8(cx->ks, 3); - ke8(cx->ks, 4); ke8(cx->ks, 5); - kel8(cx->ks, 6); -#endif -#ifdef AES_ERR_CHK - return aes_good; -#endif -} - -#endif - -#if defined(AES_VAR) - -aes_rval aes_encrypt_key(const void *in_key, int key_len, aes_encrypt_ctx cx[1]) -{ - switch(key_len) - { -#ifdef AES_ERR_CHK - case 16: case 128: return aes_encrypt_key128(in_key, cx); - case 24: case 192: return aes_encrypt_key192(in_key, cx); - case 32: case 256: return aes_encrypt_key256(in_key, cx); - default: return aes_error; -#else - case 16: case 128: aes_encrypt_key128(in_key, cx); return; - case 24: case 192: aes_encrypt_key192(in_key, cx); return; - case 32: case 256: aes_encrypt_key256(in_key, cx); return; -#endif - } -} - -#endif - -#endif - -#if defined(DECRYPTION_KEY_SCHEDULE) - -#if DEC_ROUND == NO_TABLES -#define ff(x) (x) -#else -#define ff(x) inv_mcol(x) -#ifdef dec_imvars -#define d_vars dec_imvars -#endif -#endif - -#if 1 -#define kdf4(k,i) \ -{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; ss[1] = ss[1] ^ ss[3]; ss[2] = ss[2] ^ ss[3]; ss[3] = ss[3]; \ - ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \ - ss[4] ^= k[4*(i)]; k[4*(i)+4] = ff(ss[4]); ss[4] ^= k[4*(i)+1]; k[4*(i)+5] = ff(ss[4]); \ - ss[4] ^= k[4*(i)+2]; k[4*(i)+6] = ff(ss[4]); ss[4] ^= k[4*(i)+3]; k[4*(i)+7] = ff(ss[4]); \ -} -#define kd4(k,i) \ -{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \ - k[4*(i)+4] = ss[4] ^= k[4*(i)]; k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \ - k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \ -} -#define kdl4(k,i) \ -{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \ - k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; k[4*(i)+5] = ss[1] ^ ss[3]; \ - k[4*(i)+6] = ss[0]; k[4*(i)+7] = ss[1]; \ -} -#else -#define kdf4(k,i) \ -{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ff(ss[0]); ss[1] ^= ss[0]; k[4*(i)+ 5] = ff(ss[1]); \ - ss[2] ^= ss[1]; k[4*(i)+ 6] = ff(ss[2]); ss[3] ^= ss[2]; k[4*(i)+ 7] = ff(ss[3]); \ -} -#define kd4(k,i) \ -{ ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \ - ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[4*(i)+ 4] = ss[4] ^= k[4*(i)]; \ - ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[4] ^= k[4*(i)+ 1]; \ - ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[4] ^= k[4*(i)+ 2]; \ - ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[4] ^= k[4*(i)+ 3]; \ -} -#define kdl4(k,i) \ -{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ss[0]; ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[1]; \ - ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[2]; ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[3]; \ -} -#endif - -#define kdf6(k,i) \ -{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ff(ss[0]); ss[1] ^= ss[0]; k[6*(i)+ 7] = ff(ss[1]); \ - ss[2] ^= ss[1]; k[6*(i)+ 8] = ff(ss[2]); ss[3] ^= ss[2]; k[6*(i)+ 9] = ff(ss[3]); \ - ss[4] ^= ss[3]; k[6*(i)+10] = ff(ss[4]); ss[5] ^= ss[4]; k[6*(i)+11] = ff(ss[5]); \ -} -#define kd6(k,i) \ -{ ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \ - ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \ - ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \ - ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \ - ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \ - ss[4] ^= ss[3]; k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \ - ss[5] ^= ss[4]; k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \ -} -#define kdl6(k,i) \ -{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ss[0]; ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[1]; \ - ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[2]; ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[3]; \ -} - -#define kdf8(k,i) \ -{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ff(ss[0]); ss[1] ^= ss[0]; k[8*(i)+ 9] = ff(ss[1]); \ - ss[2] ^= ss[1]; k[8*(i)+10] = ff(ss[2]); ss[3] ^= ss[2]; k[8*(i)+11] = ff(ss[3]); \ - ss[4] ^= ls_box(ss[3],0); k[8*(i)+12] = ff(ss[4]); ss[5] ^= ss[4]; k[8*(i)+13] = ff(ss[5]); \ - ss[6] ^= ss[5]; k[8*(i)+14] = ff(ss[6]); ss[7] ^= ss[6]; k[8*(i)+15] = ff(ss[7]); \ -} -#define kd8(k,i) \ -{ aes_32t g = ls_box(ss[7],3) ^ t_use(r,c)[i]; \ - ss[0] ^= g; g = ff(g); k[8*(i)+ 8] = g ^= k[8*(i)]; \ - ss[1] ^= ss[0]; k[8*(i)+ 9] = g ^= k[8*(i)+ 1]; \ - ss[2] ^= ss[1]; k[8*(i)+10] = g ^= k[8*(i)+ 2]; \ - ss[3] ^= ss[2]; k[8*(i)+11] = g ^= k[8*(i)+ 3]; \ - g = ls_box(ss[3],0); \ - ss[4] ^= g; g = ff(g); k[8*(i)+12] = g ^= k[8*(i)+ 4]; \ - ss[5] ^= ss[4]; k[8*(i)+13] = g ^= k[8*(i)+ 5]; \ - ss[6] ^= ss[5]; k[8*(i)+14] = g ^= k[8*(i)+ 6]; \ - ss[7] ^= ss[6]; k[8*(i)+15] = g ^= k[8*(i)+ 7]; \ -} -#define kdl8(k,i) \ -{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ss[0]; ss[1] ^= ss[0]; k[8*(i)+ 9] = ss[1]; \ - ss[2] ^= ss[1]; k[8*(i)+10] = ss[2]; ss[3] ^= ss[2]; k[8*(i)+11] = ss[3]; \ -} - -#if defined(AES_128) || defined(AES_VAR) - -aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]) -{ aes_32t ss[5]; -#ifdef d_vars - d_vars; -#endif - cx->ks[0] = ss[0] = word_in(in_key, 0); - cx->ks[1] = ss[1] = word_in(in_key, 1); - cx->ks[2] = ss[2] = word_in(in_key, 2); - cx->ks[3] = ss[3] = word_in(in_key, 3); - -#if DEC_UNROLL == NONE - { aes_32t i; - - for(i = 0; i < (11 * N_COLS - 1) / 4; ++i) - ke4(cx->ks, i); -#if !(DEC_ROUND == NO_TABLES) - for(i = N_COLS; i < 10 * N_COLS; ++i) - cx->ks[i] = inv_mcol(cx->ks[i]); -#endif - } -#else - kdf4(cx->ks, 0); kd4(cx->ks, 1); - kd4(cx->ks, 2); kd4(cx->ks, 3); - kd4(cx->ks, 4); kd4(cx->ks, 5); - kd4(cx->ks, 6); kd4(cx->ks, 7); - kd4(cx->ks, 8); kdl4(cx->ks, 9); -#endif - - /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */ - /* key and must be non-zero for 128 and 192 bits keys */ - cx->ks[53] = cx->ks[45] = 0; - cx->ks[52] = 10; -#ifdef AES_ERR_CHK - return aes_good; -#endif -} - -#endif - -#if defined(AES_192) || defined(AES_VAR) - -aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]) -{ aes_32t ss[7]; -#ifdef d_vars - d_vars; -#endif - cx->ks[0] = ss[0] = word_in(in_key, 0); - cx->ks[1] = ss[1] = word_in(in_key, 1); - cx->ks[2] = ss[2] = word_in(in_key, 2); - cx->ks[3] = ss[3] = word_in(in_key, 3); - -#if DEC_UNROLL == NONE - cx->ks[4] = ss[4] = word_in(in_key, 4); - cx->ks[5] = ss[5] = word_in(in_key, 5); - { aes_32t i; - - for(i = 0; i < (13 * N_COLS - 1) / 6; ++i) - ke6(cx->ks, i); -#if !(DEC_ROUND == NO_TABLES) - for(i = N_COLS; i < 12 * N_COLS; ++i) - cx->ks[i] = inv_mcol(cx->ks[i]); -#endif - } -#else - cx->ks[4] = ff(ss[4] = word_in(in_key, 4)); - cx->ks[5] = ff(ss[5] = word_in(in_key, 5)); - kdf6(cx->ks, 0); kd6(cx->ks, 1); - kd6(cx->ks, 2); kd6(cx->ks, 3); - kd6(cx->ks, 4); kd6(cx->ks, 5); - kd6(cx->ks, 6); kdl6(cx->ks, 7); -#endif - - /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */ - /* key and must be non-zero for 128 and 192 bits keys */ - cx->ks[53] = cx->ks[45]; - cx->ks[52] = 12; -#ifdef AES_ERR_CHK - return aes_good; -#endif -} - -#endif - -#if defined(AES_256) || defined(AES_VAR) - -aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]) -{ aes_32t ss[8]; -#ifdef d_vars - d_vars; -#endif - cx->ks[0] = ss[0] = word_in(in_key, 0); - cx->ks[1] = ss[1] = word_in(in_key, 1); - cx->ks[2] = ss[2] = word_in(in_key, 2); - cx->ks[3] = ss[3] = word_in(in_key, 3); - -#if DEC_UNROLL == NONE - cx->ks[4] = ss[4] = word_in(in_key, 4); - cx->ks[5] = ss[5] = word_in(in_key, 5); - cx->ks[6] = ss[6] = word_in(in_key, 6); - cx->ks[7] = ss[7] = word_in(in_key, 7); - { aes_32t i; - - for(i = 0; i < (15 * N_COLS - 1) / 8; ++i) - ke8(cx->ks, i); -#if !(DEC_ROUND == NO_TABLES) - for(i = N_COLS; i < 14 * N_COLS; ++i) - cx->ks[i] = inv_mcol(cx->ks[i]); -#endif - } -#else - cx->ks[4] = ff(ss[4] = word_in(in_key, 4)); - cx->ks[5] = ff(ss[5] = word_in(in_key, 5)); - cx->ks[6] = ff(ss[6] = word_in(in_key, 6)); - cx->ks[7] = ff(ss[7] = word_in(in_key, 7)); - kdf8(cx->ks, 0); kd8(cx->ks, 1); - kd8(cx->ks, 2); kd8(cx->ks, 3); - kd8(cx->ks, 4); kd8(cx->ks, 5); - kdl8(cx->ks, 6); -#endif -#ifdef AES_ERR_CHK - return aes_good; -#endif -} - -#endif - -#if defined(AES_VAR) - -aes_rval aes_decrypt_key(const void *in_key, int key_len, aes_decrypt_ctx cx[1]) -{ - switch(key_len) - { -#ifdef AES_ERR_CHK - case 16: case 128: return aes_decrypt_key128(in_key, cx); - case 24: case 192: return aes_decrypt_key192(in_key, cx); - case 32: case 256: return aes_decrypt_key256(in_key, cx); - default: return aes_error; -#else - case 16: case 128: aes_decrypt_key128(in_key, cx); return; - case 24: case 192: aes_decrypt_key192(in_key, cx); return; - case 32: case 256: aes_decrypt_key256(in_key, cx); return; -#endif - } -} - -#endif - -#endif - -#if defined(__cplusplus) -} -#endif diff --git a/scripts/conf-w32brg/cipher/aesopt.h b/scripts/conf-w32brg/cipher/aesopt.h deleted file mode 100644 index ba94f97b3..000000000 --- a/scripts/conf-w32brg/cipher/aesopt.h +++ /dev/null @@ -1,1042 +0,0 @@ -/* - --------------------------------------------------------------------------- - Copyright (c) 2003, Dr Brian Gladman <[email protected]>, Worcester, UK. - All rights reserved. - - LICENSE TERMS - - The free distribution and use of this software in both source and binary - form is allowed (with or without changes) provided that: - - 1. distributions of this source code include the above copyright - notice, this list of conditions and the following disclaimer; - - 2. distributions in binary form include the above copyright - notice, this list of conditions and the following disclaimer - in the documentation and/or other associated materials; - - 3. the copyright holder's name is not used to endorse products - built using this software without specific written permission. - - ALTERNATIVELY, provided that this notice is retained in full, this product - may be distributed under the terms of the GNU General Public License (GPL), - in which case the provisions of the GPL apply INSTEAD OF those given above. - - DISCLAIMER - - This software is provided 'as is' with no explicit or implied warranties - in respect of its properties, including, but not limited to, correctness - and/or fitness for purpose. - --------------------------------------------------------------------------- - Issue Date: 1/06/2003 - - My thanks go to Dag Arne Osvik for devising the schemes used here for key - length derivation from the form of the key schedule - - This file contains the compilation options for AES (Rijndael) and code - that is common across encryption, key scheduling and table generation. - - OPERATION - - These source code files implement the AES algorithm Rijndael designed by - Joan Daemen and Vincent Rijmen. This version is designed for the standard - block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24 - and 32 bytes). - - This version is designed for flexibility and speed using operations on - 32-bit words rather than operations on bytes. It can be compiled with - either big or little endian internal byte order but is faster when the - native byte order for the processor is used. - - THE CIPHER INTERFACE - - The cipher interface is implemented as an array of bytes in which lower - AES bit sequence indexes map to higher numeric significance within bytes. - - aes_08t (an unsigned 8-bit type) - aes_32t (an unsigned 32-bit type) - struct aes_encrypt_ctx (structure for the cipher encryption context) - struct aes_decrypt_ctx (structure for the cipher decryption context) - aes_rval the function return type - - C subroutine calls: - - aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]); - aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]); - aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]); - aes_rval aes_encrypt(const void *in_blk, - void *out_blk, const aes_encrypt_ctx cx[1]); - - aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]); - aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]); - aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]); - aes_rval aes_decrypt(const void *in_blk, - void *out_blk, const aes_decrypt_ctx cx[1]); - - IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that - you call genTabs() before AES is used so that the tables are initialised. - - C++ aes class subroutines: - - Class AESencrypt for encryption - - Construtors: - AESencrypt(void) - AESencrypt(const void *in_key) - 128 bit key - Members: - void key128(const void *in_key) - void key192(const void *in_key) - void key256(const void *in_key) - void encrypt(const void *in_blk, void *out_blk) const - - Class AESdecrypt for encryption - Construtors: - AESdecrypt(void) - AESdecrypt(const void *in_key) - 128 bit key - Members: - void key128(const void *in_key) - void key192(const void *in_key) - void key256(const void *in_key) - void decrypt(const void *in_blk, void *out_blk) const - - COMPILATION - - The files used to provide AES (Rijndael) are - - a. aes.h for the definitions needed for use in C. - b. aescpp.h for the definitions needed for use in C++. - c. aesopt.h for setting compilation options (also includes common code). - d. aescrypt.c for encryption and decrytpion, or - e. aeskey.c for key scheduling. - f. aestab.c for table loading or generation. - g. aescrypt.asm for encryption and decryption using assembler code. - h. aescrypt.mmx.asm for encryption and decryption using MMX assembler. - - To compile AES (Rijndael) for use in C code use aes.h and set the - defines here for the facilities you need (key lengths, encryption - and/or decryption). Do not define AES_DLL or AES_CPP. Set the options - for optimisations and table sizes here. - - To compile AES (Rijndael) for use in in C++ code use aescpp.h but do - not define AES_DLL - - To compile AES (Rijndael) in C as a Dynamic Link Library DLL) use - aes.h and include the AES_DLL define. - - CONFIGURATION OPTIONS (here and in aes.h) - - a. set AES_DLL in aes.h if AES (Rijndael) is to be compiled as a DLL - b. You may need to set PLATFORM_BYTE_ORDER to define the byte order. - c. If you want the code to run in a specific internal byte order, then - INTERNAL_BYTE_ORDER must be set accordingly. - d. set other configuration options decribed below. -*/ - -#ifndef _AESOPT_H -#define _AESOPT_H - -#if defined(__cplusplus) -extern "C" -{ -#endif - -/* START OF CONFIGURATION OPTIONS - - USE OF DEFINES - - Later in this section there are a number of defines that control the - operation of the code. In each section, the purpose of each define is - explained so that the relevant form can be included or excluded by - setting either 1's or 0's respectively on the branches of the related - #if clauses. -*/ - -/* DO NOT CHANGE THE FOLLOWING EIGHT DEFINES */ - -#define NO_TABLES 0 -#define ONE_TABLE 1 -#define FOUR_TABLES 4 -#define NONE 0 -#define PARTIAL 1 -#define FULL 2 -#define AES_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */ -#define AES_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */ - -/* 1. PLATFORM SPECIFIC INCLUDES */ - -#if defined( __CRYPTLIB__ ) && !defined( INC_ALL ) && !defined( INC_CHILD ) -#include "crypt/aes.h" -#else - #include "aes.h" -#endif - -#if defined(__GNUC__) || defined(__GNU_LIBRARY__) -# if defined( __FreeBSD__ ) || defined( __OpenBSD__ ) -# include <sys/endian.h> -# elif defined( __APPLE__ ) -# if defined( __BIG_ENDIAN__ ) && !defined( BIG_ENDIAN ) -# define BIG_ENDIAN -# elif defined( __LITTLE_ENDIAN__ ) && !defined( LITTLE_ENDIAN ) -# define LITTLE_ENDIAN -# else -# error Need to define CPU endianness for OS X -# endif -# else -# include <endian.h> -# include <byteswap.h> -# endif /* *BSDs don't use standard Gnu setup */ -#elif defined(__CRYPTLIB__) -# if defined( INC_ALL ) -# include "crypt.h" -# elif defined( INC_CHILD ) -# include "../crypt.h" -# else -# include "crypt.h" -# endif -# if defined(DATA_LITTLEENDIAN) -# define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN -# else -# define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN -# endif -#elif defined(_MSC_VER) -# include <stdlib.h> -#elif !defined(WIN32) -# include <stdlib.h> -# if defined (_ENDIAN_H) -# include "endian.h" -# else -# include <sys/param.h> -# endif -#endif - -#if defined(bswap32) -#define aes_sw32 bswap32 -#elif defined(bswap_32) -#define aes_sw32 bswap_32 -#endif - -/* 2. BYTE ORDER IN 32-BIT WORDS - - To obtain the highest speed on processors with 32-bit words, this code - needs to determine the order in which bytes are packed into such words. - The following block of code is an attempt to capture the most obvious - ways in which various environemnts define byte order. It may well fail, - in which case the definitions will need to be set by editing at the - points marked **** EDIT HERE IF NECESSARY **** below. -*/ -#if !defined(PLATFORM_BYTE_ORDER) -#if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN) -# if defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN) -# if defined(BYTE_ORDER) -# if (BYTE_ORDER == LITTLE_ENDIAN) -# define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN -# elif (BYTE_ORDER == BIG_ENDIAN) -# define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN -# endif -# endif -# elif defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN) -# define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN -# elif !defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN) -# define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN -# endif -#elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN) -# if defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN) -# if defined(_BYTE_ORDER) -# if (_BYTE_ORDER == _LITTLE_ENDIAN) -# define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN -# elif (_BYTE_ORDER == _BIG_ENDIAN) -# define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN -# endif -# endif -# elif defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN) -# define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN -# elif !defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN) -# define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN -# endif -#elif 0 /* **** EDIT HERE IF NECESSARY **** */ -#define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN -#elif 0 /* **** EDIT HERE IF NECESSARY **** */ -#define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN -#elif (('1234' >> 24) == '1') -# define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN -#elif (('4321' >> 24) == '1') -# define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN -#endif -#endif - -#if !defined(PLATFORM_BYTE_ORDER) -# error Please set undetermined byte order (lines 241 or 243 of aesopt.h). -#endif - -/* 3. FUNCTIONS REQUIRED - - This implementation provides subroutines for encryption, decryption - and for setting the three key lengths (separately) for encryption - and decryption. When the assembler code is not being used the following - definition blocks allow the selection of the routines that are to be - included in the compilation. -*/ -#ifdef AES_ENCRYPT -#define ENCRYPTION -#define ENCRYPTION_KEY_SCHEDULE -#endif - -#ifdef AES_DECRYPT -#define DECRYPTION -#define DECRYPTION_KEY_SCHEDULE -#endif - -/* 4. ASSEMBLER SUPPORT - - This define (which can be on the command line) enables the use of the - assembler code routines for encryption and decryption with the C code - only providing key scheduling -*/ -#if 0 -#define AES_ASM -#endif - -/* 5. BYTE ORDER WITHIN 32 BIT WORDS - - The fundamental data processing units in Rijndael are 8-bit bytes. The - input, output and key input are all enumerated arrays of bytes in which - bytes are numbered starting at zero and increasing to one less than the - number of bytes in the array in question. This enumeration is only used - for naming bytes and does not imply any adjacency or order relationship - from one byte to another. When these inputs and outputs are considered - as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to - byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte. - In this implementation bits are numbered from 0 to 7 starting at the - numerically least significant end of each byte (bit n represents 2^n). - - However, Rijndael can be implemented more efficiently using 32-bit - words by packing bytes into words so that bytes 4*n to 4*n+3 are placed - into word[n]. While in principle these bytes can be assembled into words - in any positions, this implementation only supports the two formats in - which bytes in adjacent positions within words also have adjacent byte - numbers. This order is called big-endian if the lowest numbered bytes - in words have the highest numeric significance and little-endian if the - opposite applies. - - This code can work in either order irrespective of the order used by the - machine on which it runs. Normally the internal byte order will be set - to the order of the processor on which the code is to be run but this - define can be used to reverse this in special situations - - NOTE: Assembler code versions rely on PLATFORM_BYTE_ORDER being set -*/ -#if 1 || defined(AES_ASM) -#define INTERNAL_BYTE_ORDER PLATFORM_BYTE_ORDER -#elif 0 -#define INTERNAL_BYTE_ORDER AES_LITTLE_ENDIAN -#elif 0 -#define INTERNAL_BYTE_ORDER AES_BIG_ENDIAN -#else -#error The internal byte order is not defined -#endif - -/* 6. FAST INPUT/OUTPUT OPERATIONS. - - On some machines it is possible to improve speed by transferring the - bytes in the input and output arrays to and from the internal 32-bit - variables by addressing these arrays as if they are arrays of 32-bit - words. On some machines this will always be possible but there may - be a large performance penalty if the byte arrays are not aligned on - the normal word boundaries. On other machines this technique will - lead to memory access errors when such 32-bit word accesses are not - properly aligned. The option SAFE_IO avoids such problems but will - often be slower on those machines that support misaligned access - (especially so if care is taken to align the input and output byte - arrays on 32-bit word boundaries). If SAFE_IO is not defined it is - assumed that access to byte arrays as if they are arrays of 32-bit - words will not cause problems when such accesses are misaligned. -*/ -#if 1 && !defined(_MSC_VER) -#define SAFE_IO -#endif - -/* 7. LOOP UNROLLING - - The code for encryption and decrytpion cycles through a number of rounds - that can be implemented either in a loop or by expanding the code into a - long sequence of instructions, the latter producing a larger program but - one that will often be much faster. The latter is called loop unrolling. - There are also potential speed advantages in expanding two iterations in - a loop with half the number of iterations, which is called partial loop - unrolling. The following options allow partial or full loop unrolling - to be set independently for encryption and decryption -*/ -#if 1 -#define ENC_UNROLL FULL -#elif 0 -#define ENC_UNROLL PARTIAL -#else -#define ENC_UNROLL NONE -#endif - -#if 1 -#define DEC_UNROLL FULL -#elif 0 -#define DEC_UNROLL PARTIAL -#else -#define DEC_UNROLL NONE -#endif - -/* 8. FAST FINITE FIELD OPERATIONS - - If this section is included, tables are used to provide faster finite - field arithmetic (this has no effect if FIXED_TABLES is defined). -*/ -#if 1 -#define FF_TABLES -#endif - -/* 9. INTERNAL STATE VARIABLE FORMAT - - The internal state of Rijndael is stored in a number of local 32-bit - word varaibles which can be defined either as an array or as individual - names variables. Include this section if you want to store these local - varaibles in arrays. Otherwise individual local variables will be used. -*/ -#if 1 -#define ARRAYS -#endif - -/* In this implementation the columns of the state array are each held in - 32-bit words. The state array can be held in various ways: in an array - of words, in a number of individual word variables or in a number of - processor registers. The following define maps a variable name x and - a column number c to the way the state array variable is to be held. - The first define below maps the state into an array x[c] whereas the - second form maps the state into a number of individual variables x0, - x1, etc. Another form could map individual state colums to machine - register names. -*/ - -#if defined(ARRAYS) -#define s(x,c) x[c] -#else -#define s(x,c) x##c -#endif - -/* 10. FIXED OR DYNAMIC TABLES - - When this section is included the tables used by the code are compiled - statically into the binary file. Otherwise the subroutine gen_tabs() - must be called to compute them before the code is first used. -*/ -#if 1 -#define FIXED_TABLES -#endif - -/* 11. TABLE ALIGNMENT - - On some sytsems speed will be improved by aligning the AES large lookup - tables on particular boundaries. This define should be set to a power of - two giving the desired alignment. It can be left undefined if alignment - is not needed. This option is specific to the Microsft VC++ compiler. -*/ - -#define TABLE_ALIGN 64 - -/* 12. INTERNAL TABLE CONFIGURATION - - This cipher proceeds by repeating in a number of cycles known as 'rounds' - which are implemented by a round function which can optionally be speeded - up using tables. The basic tables are each 256 32-bit words, with either - one or four tables being required for each round function depending on - how much speed is required. The encryption and decryption round functions - are different and the last encryption and decrytpion round functions are - different again making four different round functions in all. - - This means that: - 1. Normal encryption and decryption rounds can each use either 0, 1 - or 4 tables and table spaces of 0, 1024 or 4096 bytes each. - 2. The last encryption and decryption rounds can also use either 0, 1 - or 4 tables and table spaces of 0, 1024 or 4096 bytes each. - - Include or exclude the appropriate definitions below to set the number - of tables used by this implementation. -*/ - -#if 1 /* set tables for the normal encryption round */ -#define ENC_ROUND FOUR_TABLES -#elif 0 -#define ENC_ROUND ONE_TABLE -#else -#define ENC_ROUND NO_TABLES -#endif - -#if 1 /* set tables for the last encryption round */ -#define LAST_ENC_ROUND FOUR_TABLES -#elif 0 -#define LAST_ENC_ROUND ONE_TABLE -#else -#define LAST_ENC_ROUND NO_TABLES -#endif - -#if 1 /* set tables for the normal decryption round */ -#define DEC_ROUND FOUR_TABLES -#elif 0 -#define DEC_ROUND ONE_TABLE -#else -#define DEC_ROUND NO_TABLES -#endif - -#if 1 /* set tables for the last decryption round */ -#define LAST_DEC_ROUND FOUR_TABLES -#elif 0 -#define LAST_DEC_ROUND ONE_TABLE -#else -#define LAST_DEC_ROUND NO_TABLES -#endif - -/* The decryption key schedule can be speeded up with tables in the same - way that the round functions can. Include or exclude the following - defines to set this requirement. -*/ -#if 1 -#define KEY_SCHED FOUR_TABLES -#elif 0 -#define KEY_SCHED ONE_TABLE -#else -#define KEY_SCHED NO_TABLES -#endif - -/* END OF CONFIGURATION OPTIONS */ - -#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2)) - -/* Disable or report errors on some combinations of options */ - -#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES -#undef LAST_ENC_ROUND -#define LAST_ENC_ROUND NO_TABLES -#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES -#undef LAST_ENC_ROUND -#define LAST_ENC_ROUND ONE_TABLE -#endif - -#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE -#undef ENC_UNROLL -#define ENC_UNROLL NONE -#endif - -#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES -#undef LAST_DEC_ROUND -#define LAST_DEC_ROUND NO_TABLES -#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES -#undef LAST_DEC_ROUND -#define LAST_DEC_ROUND ONE_TABLE -#endif - -#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE -#undef DEC_UNROLL -#define DEC_UNROLL NONE -#endif - -/* upr(x,n): rotates bytes within words by n positions, moving bytes to - higher index positions with wrap around into low positions - ups(x,n): moves bytes by n positions to higher index positions in - words but without wrap around - bval(x,n): extracts a byte from a word - - NOTE: The definitions given here are intended only for use with - unsigned variables and with shift counts that are compile - time constants -*/ - -#if (INTERNAL_BYTE_ORDER == AES_LITTLE_ENDIAN) -#define upr(x,n) (((aes_32t)(x) << (8 * (n))) | ((aes_32t)(x) >> (32 - 8 * (n)))) -#define ups(x,n) ((aes_32t) (x) << (8 * (n))) -#define bval(x,n) ((aes_08t)((x) >> (8 * (n)))) -#define bytes2word(b0, b1, b2, b3) \ - (((aes_32t)(b3) << 24) | ((aes_32t)(b2) << 16) | ((aes_32t)(b1) << 8) | (b0)) -#endif - -#if (INTERNAL_BYTE_ORDER == AES_BIG_ENDIAN) -#define upr(x,n) (((aes_32t)(x) >> (8 * (n))) | ((aes_32t)(x) << (32 - 8 * (n)))) -#define ups(x,n) ((aes_32t) (x) >> (8 * (n)))) -#define bval(x,n) ((aes_08t)((x) >> (24 - 8 * (n)))) -#define bytes2word(b0, b1, b2, b3) \ - (((aes_32t)(b0) << 24) | ((aes_32t)(b1) << 16) | ((aes_32t)(b2) << 8) | (b3)) -#endif - -#if defined(SAFE_IO) - -#define word_in(x,c) bytes2word(((aes_08t*)(x)+4*c)[0], ((aes_08t*)(x)+4*c)[1], \ - ((aes_08t*)(x)+4*c)[2], ((aes_08t*)(x)+4*c)[3]) -#define word_out(x,c,v) { ((aes_08t*)(x)+4*c)[0] = bval(v,0); ((aes_08t*)(x)+4*c)[1] = bval(v,1); \ - ((aes_08t*)(x)+4*c)[2] = bval(v,2); ((aes_08t*)(x)+4*c)[3] = bval(v,3); } - -#elif (INTERNAL_BYTE_ORDER == PLATFORM_BYTE_ORDER) - -#define word_in(x,c) (*((aes_32t*)(x)+(c))) -#define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = (v)) - -#else - -#ifndef aes_sw32 -#define brot(x,n) (((aes_32t)(x) << n) | ((aes_32t)(x) >> (32 - n))) -#define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00)) -#endif - -#define word_in(x,c) aes_sw32(*((aes_32t*)(x)+(c))) -#define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = aes_sw32(v)) - -#endif - -/* the finite field modular polynomial and elements */ - -#define WPOLY 0x011b -#define BPOLY 0x1b - -/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */ - -#define m1 0x80808080 -#define m2 0x7f7f7f7f -#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY)) - -/* The following defines provide alternative definitions of gf_mulx that might - give improved performance if a fast 32-bit multiply is not available. Note - that a temporary variable u needs to be defined where gf_mulx is used. - -#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6)) -#define m4 (0x01010101 * BPOLY) -#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4) -*/ - -/* Work out which tables are needed for the different options */ - -#ifdef AES_ASM -#ifdef ENC_ROUND -#undef ENC_ROUND -#endif -#define ENC_ROUND FOUR_TABLES -#ifdef LAST_ENC_ROUND -#undef LAST_ENC_ROUND -#endif -#define LAST_ENC_ROUND FOUR_TABLES -#ifdef DEC_ROUND -#undef DEC_ROUND -#endif -#define DEC_ROUND FOUR_TABLES -#ifdef LAST_DEC_ROUND -#undef LAST_DEC_ROUND -#endif -#define LAST_DEC_ROUND FOUR_TABLES -#ifdef KEY_SCHED -#undef KEY_SCHED -#define KEY_SCHED FOUR_TABLES -#endif -#endif - -#if defined(ENCRYPTION) || defined(AES_ASM) -#if ENC_ROUND == ONE_TABLE -#define FT1_SET -#elif ENC_ROUND == FOUR_TABLES -#define FT4_SET -#else -#define SBX_SET -#endif -#if LAST_ENC_ROUND == ONE_TABLE -#define FL1_SET -#elif LAST_ENC_ROUND == FOUR_TABLES -#define FL4_SET -#elif !defined(SBX_SET) -#define SBX_SET -#endif -#endif - -#if defined(DECRYPTION) || defined(AES_ASM) -#if DEC_ROUND == ONE_TABLE -#define IT1_SET -#elif DEC_ROUND == FOUR_TABLES -#define IT4_SET -#else -#define ISB_SET -#endif -#if LAST_DEC_ROUND == ONE_TABLE -#define IL1_SET -#elif LAST_DEC_ROUND == FOUR_TABLES -#define IL4_SET -#elif !defined(ISB_SET) -#define ISB_SET -#endif -#endif - -#if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE) -#if KEY_SCHED == ONE_TABLE -#define LS1_SET -#define IM1_SET -#elif KEY_SCHED == FOUR_TABLES -#define LS4_SET -#define IM4_SET -#elif !defined(SBX_SET) -#define SBX_SET -#endif -#endif - -/* If there are no global variables, the AES tables are placed in - a structure and a pointer is added to the AES context. If this - facility is used, the calling program has to ensure that this - pointer is managed appropriately. In particular, the value of - the t_dec(in,it) item in the table structure must be set to zero - in order to ensure that the tables are initialised. In practice - the three code sequences in aeskey.c that control the calls to - gen_tabs() and the gen_tabs() routine itself will require some - changes for a specific implementation. If global variables are - available it will generally be preferable to use them with the - precomputed FIXED_TABLES option that uses static global tables. - - The following defines can be used to control the way the tables - are defined, initialised and used in embedded environments that - require special features for these purposes - - the 't_dec' construction is used to declare fixed table arrays - the 't_set' construction is used to set fixed table values - the 't_use' construction is used to access fixed table values - - 256 byte tables: - - t_xxx(s,box) => forward S box - t_xxx(i,box) => inverse S box - - 256 32-bit word OR 4 x 256 32-bit word tables: - - t_xxx(f,n) => forward normal round - t_xxx(f,l) => forward last round - t_xxx(i,n) => inverse normal round - t_xxx(i,l) => inverse last round - t_xxx(l,s) => key schedule table - t_xxx(i,m) => key schedule table - - Other variables and tables: - - t_xxx(r,c) => the rcon table -*/ - -#define t_dec(m,n) t_##m##n -#define t_set(m,n) t_##m##n -#define t_use(m,n) t_##m##n - -#if defined(DO_TABLES) /* declare and instantiate tables */ - -/* finite field arithmetic operations for table generation */ - -#if defined(FIXED_TABLES) || !defined(FF_TABLES) - -#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY)) -#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY)) -#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \ - ^ (((x>>5) & 4) * WPOLY)) -#define f3(x) (f2(x) ^ x) -#define f9(x) (f8(x) ^ x) -#define fb(x) (f8(x) ^ f2(x) ^ x) -#define fd(x) (f8(x) ^ f4(x) ^ x) -#define fe(x) (f8(x) ^ f4(x) ^ f2(x)) - -#else - -#define f2(x) ((x) ? pow[log[x] + 0x19] : 0) -#define f3(x) ((x) ? pow[log[x] + 0x01] : 0) -#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0) -#define fb(x) ((x) ? pow[log[x] + 0x68] : 0) -#define fd(x) ((x) ? pow[log[x] + 0xee] : 0) -#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0) -#define fi(x) ((x) ? pow[ 255 - log[x]] : 0) - -#endif - -#if defined(FIXED_TABLES) /* declare and set values for static tables */ - -#define sb_data(w) \ - w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\ - w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\ - w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\ - w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\ - w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\ - w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\ - w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\ - w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\ - w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\ - w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\ - w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\ - w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\ - w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\ - w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\ - w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\ - w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\ - w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\ - w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\ - w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\ - w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\ - w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\ - w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\ - w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\ - w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\ - w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\ - w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\ - w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\ - w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\ - w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\ - w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\ - w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\ - w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) - -#define isb_data(w) \ - w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\ - w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\ - w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\ - w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\ - w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\ - w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\ - w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\ - w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\ - w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\ - w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\ - w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\ - w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\ - w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\ - w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\ - w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\ - w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\ - w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\ - w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\ - w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\ - w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\ - w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\ - w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\ - w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\ - w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\ - w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\ - w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\ - w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\ - w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\ - w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\ - w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\ - w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\ - w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d), - -#define mm_data(w) \ - w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\ - w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\ - w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\ - w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\ - w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\ - w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\ - w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\ - w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\ - w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\ - w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\ - w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\ - w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\ - w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\ - w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\ - w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\ - w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\ - w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\ - w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\ - w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\ - w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\ - w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\ - w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\ - w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\ - w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\ - w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\ - w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\ - w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\ - w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\ - w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\ - w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\ - w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\ - w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) - -#define h0(x) (x) - -/* These defines are used to ensure tables are generated in the - right format depending on the internal byte order required -*/ - -#define w0(p) bytes2word(p, 0, 0, 0) -#define w1(p) bytes2word(0, p, 0, 0) -#define w2(p) bytes2word(0, 0, p, 0) -#define w3(p) bytes2word(0, 0, 0, p) - -#define u0(p) bytes2word(f2(p), p, p, f3(p)) -#define u1(p) bytes2word(f3(p), f2(p), p, p) -#define u2(p) bytes2word(p, f3(p), f2(p), p) -#define u3(p) bytes2word(p, p, f3(p), f2(p)) - -#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p)) -#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p)) -#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p)) -#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p)) - -const aes_32t t_dec(r,c)[RC_LENGTH] = -{ - w0(0x01), w0(0x02), w0(0x04), w0(0x08), w0(0x10), - w0(0x20), w0(0x40), w0(0x80), w0(0x1b), w0(0x36) -}; - -#define d_1(t,n,b,v) const t n[256] = { b(v##0) } -#define d_4(t,n,b,v) const t n[4][256] = { { b(v##0) }, { b(v##1) }, { b(v##2) }, { b(v##3) } } - -#else /* declare and instantiate tables for dynamic value generation in in tab.c */ - -aes_32t t_dec(r,c)[RC_LENGTH]; - -#define d_1(t,n,b,v) t n[256] -#define d_4(t,n,b,v) t n[4][256] - -#endif - -#else /* declare tables without instantiation */ - -#if defined(FIXED_TABLES) - -extern const aes_32t t_dec(r,c)[RC_LENGTH]; - -#if defined(_MSC_VER) && defined(TABLE_ALIGN) -#define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t n[256] -#define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t n[4][256] -#else -#define d_1(t,n,b,v) extern const t n[256] -#define d_4(t,n,b,v) extern const t n[4][256] -#endif -#else - -extern aes_32t t_dec(r,c)[RC_LENGTH]; - -#if defined(_MSC_VER) && defined(TABLE_ALIGN) -#define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t n[256] -#define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t n[4][256] -#else -#define d_1(t,n,b,v) extern t n[256] -#define d_4(t,n,b,v) extern t n[4][256] -#endif -#endif - -#endif - -#ifdef SBX_SET - d_1(aes_08t, t_dec(s,box), sb_data, h); -#endif -#ifdef ISB_SET - d_1(aes_08t, t_dec(i,box), isb_data, h); -#endif - -#ifdef FT1_SET - d_1(aes_32t, t_dec(f,n), sb_data, u); -#endif -#ifdef FT4_SET - d_4(aes_32t, t_dec(f,n), sb_data, u); -#endif - -#ifdef FL1_SET - d_1(aes_32t, t_dec(f,l), sb_data, w); -#endif -#ifdef FL4_SET - d_4(aes_32t, t_dec(f,l), sb_data, w); -#endif - -#ifdef IT1_SET - d_1(aes_32t, t_dec(i,n), isb_data, v); -#endif -#ifdef IT4_SET - d_4(aes_32t, t_dec(i,n), isb_data, v); -#endif - -#ifdef IL1_SET - d_1(aes_32t, t_dec(i,l), isb_data, w); -#endif -#ifdef IL4_SET - d_4(aes_32t, t_dec(i,l), isb_data, w); -#endif - -#ifdef LS1_SET -#ifdef FL1_SET -#undef LS1_SET -#else - d_1(aes_32t, t_dec(l,s), sb_data, w); -#endif -#endif - -#ifdef LS4_SET -#ifdef FL4_SET -#undef LS4_SET -#else - d_4(aes_32t, t_dec(l,s), sb_data, w); -#endif -#endif - -#ifdef IM1_SET - d_1(aes_32t, t_dec(i,m), mm_data, v); -#endif -#ifdef IM4_SET - d_4(aes_32t, t_dec(i,m), mm_data, v); -#endif - -/* generic definitions of Rijndael macros that use tables */ - -#define no_table(x,box,vf,rf,c) bytes2word( \ - box[bval(vf(x,0,c),rf(0,c))], \ - box[bval(vf(x,1,c),rf(1,c))], \ - box[bval(vf(x,2,c),rf(2,c))], \ - box[bval(vf(x,3,c),rf(3,c))]) - -#define one_table(x,op,tab,vf,rf,c) \ - ( tab[bval(vf(x,0,c),rf(0,c))] \ - ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \ - ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \ - ^ op(tab[bval(vf(x,3,c),rf(3,c))],3)) - -#define four_tables(x,tab,vf,rf,c) \ - ( tab[0][bval(vf(x,0,c),rf(0,c))] \ - ^ tab[1][bval(vf(x,1,c),rf(1,c))] \ - ^ tab[2][bval(vf(x,2,c),rf(2,c))] \ - ^ tab[3][bval(vf(x,3,c),rf(3,c))]) - -#define vf1(x,r,c) (x) -#define rf1(r,c) (r) -#define rf2(r,c) ((8+r-c)&3) - -/* perform forward and inverse column mix operation on four bytes in long word x in */ -/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */ - -#if defined(FM4_SET) /* not currently used */ -#define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0) -#elif defined(FM1_SET) /* not currently used */ -#define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0) -#else -#define dec_fmvars aes_32t g2 -#define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1)) -#endif - -#if defined(IM4_SET) -#define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0) -#elif defined(IM1_SET) -#define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0) -#else -#define dec_imvars aes_32t g2, g4, g9 -#define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \ - (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1)) -#endif - -#if defined(FL4_SET) -#define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c) -#elif defined(LS4_SET) -#define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c) -#elif defined(FL1_SET) -#define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c) -#elif defined(LS1_SET) -#define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c) -#else -#define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c) -#endif - -#if defined(__cplusplus) -} -#endif - -#endif diff --git a/scripts/conf-w32brg/cipher/aestab.c b/scripts/conf-w32brg/cipher/aestab.c deleted file mode 100644 index cf051f6c6..000000000 --- a/scripts/conf-w32brg/cipher/aestab.c +++ /dev/null @@ -1,232 +0,0 @@ -/* - --------------------------------------------------------------------------- - Copyright (c) 2003, Dr Brian Gladman <[email protected]>, Worcester, UK. - All rights reserved. - - LICENSE TERMS - - The free distribution and use of this software in both source and binary - form is allowed (with or without changes) provided that: - - 1. distributions of this source code include the above copyright - notice, this list of conditions and the following disclaimer; - - 2. distributions in binary form include the above copyright - notice, this list of conditions and the following disclaimer - in the documentation and/or other associated materials; - - 3. the copyright holder's name is not used to endorse products - built using this software without specific written permission. - - ALTERNATIVELY, provided that this notice is retained in full, this product - may be distributed under the terms of the GNU General Public License (GPL), - in which case the provisions of the GPL apply INSTEAD OF those given above. - - DISCLAIMER - - This software is provided 'as is' with no explicit or implied warranties - in respect of its properties, including, but not limited to, correctness - and/or fitness for purpose. - --------------------------------------------------------------------------- - Issue Date: 1/06/2003 - -*/ - -#if defined(__cplusplus) -extern "C" -{ -#endif - -#define DO_TABLES - -#include "aesopt.h" - -#if defined(FIXED_TABLES) - -/* implemented in case of wrong call for fixed tables */ - -void gen_tabs(void) -{ -} - -#else /* dynamic table generation */ - -#if !defined(FF_TABLES) - -/* Generate the tables for the dynamic table option - - It will generally be sensible to use tables to compute finite - field multiplies and inverses but where memory is scarse this - code might sometimes be better. But it only has effect during - initialisation so its pretty unimportant in overall terms. -*/ - -/* return 2 ^ (n - 1) where n is the bit number of the highest bit - set in x with x in the range 1 < x < 0x00000200. This form is - used so that locals within fi can be bytes rather than words -*/ - -static aes_08t hibit(const aes_32t x) -{ aes_08t r = (aes_08t)((x >> 1) | (x >> 2)); - - r |= (r >> 2); - r |= (r >> 4); - return (r + 1) >> 1; -} - -/* return the inverse of the finite field element x */ - -static aes_08t fi(const aes_08t x) -{ aes_08t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0; - - if(x < 2) return x; - - for(;;) - { - if(!n1) return v1; - - while(n2 >= n1) - { - n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2); - } - - if(!n2) return v2; - - while(n1 >= n2) - { - n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1); - } - } -} - -#endif - -/* The forward and inverse affine transformations used in the S-box */ - -#define fwd_affine(x) \ - (w = (aes_32t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(aes_08t)(w^(w>>8))) - -#define inv_affine(x) \ - (w = (aes_32t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(aes_08t)(w^(w>>8))) - -static int init = 0; - -void gen_tabs(void) -{ aes_32t i, w; - -#if defined(FF_TABLES) - - aes_08t pow[512], log[256]; - - if(init) return; - /* log and power tables for GF(2^8) finite field with - WPOLY as modular polynomial - the simplest primitive - root is 0x03, used here to generate the tables - */ - - i = 0; w = 1; - do - { - pow[i] = (aes_08t)w; - pow[i + 255] = (aes_08t)w; - log[w] = (aes_08t)i++; - w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0); - } - while (w != 1); - -#else - if(init) return; -#endif - - for(i = 0, w = 1; i < RC_LENGTH; ++i) - { - t_set(r,c)[i] = bytes2word(w, 0, 0, 0); - w = f2(w); - } - - for(i = 0; i < 256; ++i) - { aes_08t b; - - b = fwd_affine(fi((aes_08t)i)); - w = bytes2word(f2(b), b, b, f3(b)); - -#ifdef SBX_SET - t_set(s,box)[i] = b; -#endif - -#ifdef FT1_SET /* tables for a normal encryption round */ - t_set(f,n)[i] = w; -#endif -#ifdef FT4_SET - t_set(f,n)[0][i] = w; - t_set(f,n)[1][i] = upr(w,1); - t_set(f,n)[2][i] = upr(w,2); - t_set(f,n)[3][i] = upr(w,3); -#endif - w = bytes2word(b, 0, 0, 0); - -#ifdef FL1_SET /* tables for last encryption round (may also */ - t_set(f,l)[i] = w; /* be used in the key schedule) */ -#endif -#ifdef FL4_SET - t_set(f,l)[0][i] = w; - t_set(f,l)[1][i] = upr(w,1); - t_set(f,l)[2][i] = upr(w,2); - t_set(f,l)[3][i] = upr(w,3); -#endif - -#ifdef LS1_SET /* table for key schedule if t_set(f,l) above is */ - t_set(l,s)[i] = w; /* not of the required form */ -#endif -#ifdef LS4_SET - t_set(l,s)[0][i] = w; - t_set(l,s)[1][i] = upr(w,1); - t_set(l,s)[2][i] = upr(w,2); - t_set(l,s)[3][i] = upr(w,3); -#endif - - b = fi(inv_affine((aes_08t)i)); - w = bytes2word(fe(b), f9(b), fd(b), fb(b)); - -#ifdef IM1_SET /* tables for the inverse mix column operation */ - t_set(i,m)[b] = w; -#endif -#ifdef IM4_SET - t_set(i,m)[0][b] = w; - t_set(i,m)[1][b] = upr(w,1); - t_set(i,m)[2][b] = upr(w,2); - t_set(i,m)[3][b] = upr(w,3); -#endif - -#ifdef ISB_SET - t_set(i,box)[i] = b; -#endif -#ifdef IT1_SET /* tables for a normal decryption round */ - t_set(i,n)[i] = w; -#endif -#ifdef IT4_SET - t_set(i,n)[0][i] = w; - t_set(i,n)[1][i] = upr(w,1); - t_set(i,n)[2][i] = upr(w,2); - t_set(i,n)[3][i] = upr(w,3); -#endif - w = bytes2word(b, 0, 0, 0); -#ifdef IL1_SET /* tables for last decryption round */ - t_set(i,l)[i] = w; -#endif -#ifdef IL4_SET - t_set(i,l)[0][i] = w; - t_set(i,l)[1][i] = upr(w,1); - t_set(i,l)[2][i] = upr(w,2); - t_set(i,l)[3][i] = upr(w,3); -#endif - } - init = 1; -} - -#endif - -#if defined(__cplusplus) -} -#endif - diff --git a/scripts/conf-w32brg/cipher/rijndael2.c b/scripts/conf-w32brg/cipher/rijndael2.c deleted file mode 100644 index 421f993b2..000000000 --- a/scripts/conf-w32brg/cipher/rijndael2.c +++ /dev/null @@ -1,279 +0,0 @@ -/* Rijndael (AES) for GnuPG - * Copyright (C) 2000, 2001 Free Software Foundation, Inc. - * - * This file is part of GnuPG. - * - * GnuPG is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * GnuPG is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA - ******************************************************************* - A version of rijndael.c modified by Brian Gladman to use his AES code - */ - -#include <stdlib.h> -#include <string.h> /* for memcmp() */ - -#include "util.h" - -#include "aes.h" - -typedef struct -{ aes_encrypt_ctx ectx[1]; - aes_decrypt_ctx dctx[1]; - unsigned int klen; - unsigned int dkey; -} RIJNDAEL_context; - -static const char *selftest(void); -static int tested = 0; - -static void -burn_stack (int bytes) -{ - char buf[64]; - - wipememory(buf,sizeof buf); - bytes -= sizeof buf; - if (bytes > 0) - burn_stack (bytes); -} - -static int -rijndael_setkey (RIJNDAEL_context *ctx, const byte *key, const unsigned keylen) -{ int rc; - - if(!tested) - { const char *tr; - tested = 1; - tr = selftest(); - if(tr) - { - fprintf(stderr, "%s\n", tr ); - return G10ERR_SELFTEST_FAILED; - } - } - - ctx->klen = keylen; - ctx->dkey = 0; - rc = 0; - if(keylen == 16 || keylen == 24 || keylen == 32) - aes_encrypt_key(key, keylen, ctx->ectx); - else - rc = 1; - burn_stack ( 100 + 16*sizeof(int)); - return rc; -} - -static void -rijndael_encrypt (const RIJNDAEL_context *ctx, byte *b, const byte *a) -{ - aes_encrypt(a, b, ctx->ectx); - burn_stack (16 + 2*sizeof(int)); -} - -static void -rijndael_decrypt (RIJNDAEL_context *ctx, byte *b, const byte *a) -{ - if(!(ctx->dkey)) - { - aes_decrypt_key((byte*)ctx->ectx, ctx->klen, ctx->dctx); - ctx->dkey = 1; - } - aes_decrypt(a, b, ctx->dctx); - burn_stack (16+2*sizeof(int)); -} - -/* Test a single encryption and decryption with each key size. */ - -static const char* -selftest (void) -{ - RIJNDAEL_context ctx; - byte scratch[16]; - - /* The test vectors are from the AES supplied ones; more or less - * randomly taken from ecb_tbl.txt (I=42,81,14) - */ - static const byte plaintext[16] = { - 0x01,0x4B,0xAF,0x22,0x78,0xA6,0x9D,0x33, - 0x1D,0x51,0x80,0x10,0x36,0x43,0xE9,0x9A - }; - static const byte key[16] = { - 0xE8,0xE9,0xEA,0xEB,0xED,0xEE,0xEF,0xF0, - 0xF2,0xF3,0xF4,0xF5,0xF7,0xF8,0xF9,0xFA - }; - static const byte ciphertext[16] = { - 0x67,0x43,0xC3,0xD1,0x51,0x9A,0xB4,0xF2, - 0xCD,0x9A,0x78,0xAB,0x09,0xA5,0x11,0xBD - }; - - static const byte plaintext_192[16] = { - 0x76,0x77,0x74,0x75,0xF1,0xF2,0xF3,0xF4, - 0xF8,0xF9,0xE6,0xE7,0x77,0x70,0x71,0x72 - }; - static const byte key_192[24] = { - 0x04,0x05,0x06,0x07,0x09,0x0A,0x0B,0x0C, - 0x0E,0x0F,0x10,0x11,0x13,0x14,0x15,0x16, - 0x18,0x19,0x1A,0x1B,0x1D,0x1E,0x1F,0x20 - }; - static const byte ciphertext_192[16] = { - 0x5D,0x1E,0xF2,0x0D,0xCE,0xD6,0xBC,0xBC, - 0x12,0x13,0x1A,0xC7,0xC5,0x47,0x88,0xAA - }; - - static const byte plaintext_256[16] = { - 0x06,0x9A,0x00,0x7F,0xC7,0x6A,0x45,0x9F, - 0x98,0xBA,0xF9,0x17,0xFE,0xDF,0x95,0x21 - }; - static const byte key_256[32] = { - 0x08,0x09,0x0A,0x0B,0x0D,0x0E,0x0F,0x10, - 0x12,0x13,0x14,0x15,0x17,0x18,0x19,0x1A, - 0x1C,0x1D,0x1E,0x1F,0x21,0x22,0x23,0x24, - 0x26,0x27,0x28,0x29,0x2B,0x2C,0x2D,0x2E - }; - static const byte ciphertext_256[16] = { - 0x08,0x0E,0x95,0x17,0xEB,0x16,0x77,0x71, - 0x9A,0xCF,0x72,0x80,0x86,0x04,0x0A,0xE3 - }; - - rijndael_setkey (&ctx, key, sizeof(key)); - rijndael_encrypt (&ctx, scratch, plaintext); - if (memcmp (scratch, ciphertext, sizeof (ciphertext))) - return "Rijndael-128 test encryption failed."; - rijndael_decrypt (&ctx, scratch, scratch); - if (memcmp (scratch, plaintext, sizeof (plaintext))) - return "Rijndael-128 test decryption failed."; - - rijndael_setkey (&ctx, key_192, sizeof(key_192)); - rijndael_encrypt (&ctx, scratch, plaintext_192); - if (memcmp (scratch, ciphertext_192, sizeof (ciphertext_192))) - return "Rijndael-192 test encryption failed."; - rijndael_decrypt (&ctx, scratch, scratch); - if (memcmp (scratch, plaintext_192, sizeof (plaintext_192))) - return "Rijndael-192 test decryption failed."; - - rijndael_setkey (&ctx, key_256, sizeof(key_256)); - rijndael_encrypt (&ctx, scratch, plaintext_256); - if (memcmp (scratch, ciphertext_256, sizeof (ciphertext_256))) - return "Rijndael-256 test encryption failed."; - rijndael_decrypt (&ctx, scratch, scratch); - if (memcmp (scratch, plaintext_256, sizeof (plaintext_256))) - return "Rijndael-256 test decryption failed."; - - return NULL; -} - -#ifdef IS_MODULE -static -#endif - const char * - rijndael_get_info (int algo, size_t *keylen, - size_t *blocksize, size_t *contextsize, - int (**r_setkey) (void *c, byte *key, unsigned keylen), - void (**r_encrypt) (void *c, byte *outbuf, byte *inbuf), - void (**r_decrypt) (void *c, byte *outbuf, byte *inbuf) - ) -{ - *keylen = algo==7? 128 : algo==8? 192 : 256; - *blocksize = 16; - *contextsize = sizeof (RIJNDAEL_context); - - *(int (**)(RIJNDAEL_context*, const byte*, const unsigned))r_setkey - = rijndael_setkey; - *(void (**)(const RIJNDAEL_context*, byte*, const byte*))r_encrypt - = rijndael_encrypt; - *(void (**)(RIJNDAEL_context*, byte*, const byte*))r_decrypt - = rijndael_decrypt; - - if( algo == 7 ) - return "AES"; - if (algo == 8) - return "AES192"; - if (algo == 9) - return "AES256"; - return NULL; -} - - -#ifdef IS_MODULE -static -const char * const gnupgext_version = "RIJNDAEL ($Revision$)"; - -static struct { - int class; - int version; - int value; - void (*func)(void); -} func_table[] = { - { 20, 1, 0, (void*)rijndael_get_info }, - { 21, 1, 7 }, - { 21, 1, 8 }, - { 21, 1, 9 }, -}; - - - -/**************** - * Enumerate the names of the functions together with information about - * this function. Set sequence to an integer with a initial value of 0 and - * do not change it. - * If what is 0 all kind of functions are returned. - * Return values: class := class of function: - * 10 = message digest algorithm info function - * 11 = integer with available md algorithms - * 20 = cipher algorithm info function - * 21 = integer with available cipher algorithms - * 30 = public key algorithm info function - * 31 = integer with available pubkey algorithms - * version = interface version of the function/pointer - * (currently this is 1 for all functions) - */ -static -void * -gnupgext_enum_func ( int what, int *sequence, int *class, int *vers ) -{ - void *ret; - int i = *sequence; - - do { - if ( i >= DIM(func_table) || i < 0 ) { - return NULL; - } - *class = func_table[i].class; - *vers = func_table[i].version; - switch( *class ) { - case 11: - case 21: - case 31: - ret = &func_table[i].value; - break; - default: - ret = func_table[i].func; - break; - } - i++; - } while ( what && what != *class ); - - *sequence = i; - return ret; -} -#endif - - - - - - - - - |