49 lines
1.1 KiB
Python
49 lines
1.1 KiB
Python
import sqlite3
|
|
|
|
conn = sqlite3.connect(r"nlpdata.db")\
|
|
|
|
|
|
def create_dataset_ep(table):
|
|
cursor = conn.cursor()
|
|
sql = "select * from " + table + " LIMIT 20"
|
|
cursor.execute(sql)
|
|
conn.commit()
|
|
|
|
dataset = []
|
|
|
|
for row in cursor:
|
|
eid = row[0]
|
|
tag = row[1]
|
|
content = row[2]
|
|
if tag == "5" or tag == "4":
|
|
dataset.append([eid, 2, content])
|
|
print(eid, 2, content)
|
|
elif tag == "1" or tag == "2":
|
|
dataset.append([eid, 0, content])
|
|
print(eid, 0, content)
|
|
else:
|
|
dataset.append([eid, 1, content])
|
|
print(eid, 1, content)
|
|
return dataset
|
|
|
|
|
|
def create_dataset_pdt():
|
|
conn_pdt = sqlite3.connect(r".\bptdata.db")
|
|
cursor = conn_pdt.cursor()
|
|
sql = "select * from " + "predict_data"
|
|
cursor.execute(sql)
|
|
conn_pdt.commit()
|
|
|
|
dataset = []
|
|
|
|
for row in cursor:
|
|
stnid = row[0]
|
|
text = row[1]
|
|
dataset.append([stnid, 0, text])
|
|
print(stnid, 0, text)
|
|
|
|
return dataset
|
|
|
|
|
|
if __name__ == '__main__':
|
|
print(create_dataset_ep("amki_test")) |