49 lines
1.7 KiB
Python
49 lines
1.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import optimization
|
|
import tensorflow as tf
|
|
|
|
|
|
class OptimizationTest(tf.test.TestCase):
|
|
|
|
def test_adam(self):
|
|
with self.test_session() as sess:
|
|
w = tf.get_variable(
|
|
"w",
|
|
shape=[3],
|
|
initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
|
|
x = tf.constant([0.4, 0.2, -0.5])
|
|
loss = tf.reduce_mean(tf.square(x - w))
|
|
tvars = tf.trainable_variables()
|
|
grads = tf.gradients(loss, tvars)
|
|
global_step = tf.train.get_or_create_global_step()
|
|
optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
|
|
train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
|
|
init_op = tf.group(tf.global_variables_initializer(),
|
|
tf.local_variables_initializer())
|
|
sess.run(init_op)
|
|
for _ in range(100):
|
|
sess.run(train_op)
|
|
w_np = sess.run(w)
|
|
self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
tf.test.main()
|