470 lines
16 KiB
Python
470 lines
16 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Create masked LM/next sentence masked_lm TF examples for BERT."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import collections
|
|
import random
|
|
import tokenization
|
|
import tensorflow as tf
|
|
|
|
flags = tf.flags
|
|
|
|
FLAGS = flags.FLAGS
|
|
|
|
flags.DEFINE_string("input_file", None,
|
|
"Input raw text file (or comma-separated list of files).")
|
|
|
|
flags.DEFINE_string(
|
|
"output_file", None,
|
|
"Output TF example file (or comma-separated list of files).")
|
|
|
|
flags.DEFINE_string("vocab_file", None,
|
|
"The vocabulary file that the BERT model was trained on.")
|
|
|
|
flags.DEFINE_bool(
|
|
"do_lower_case", True,
|
|
"Whether to lower case the input text. Should be True for uncased "
|
|
"models and False for cased models.")
|
|
|
|
flags.DEFINE_bool(
|
|
"do_whole_word_mask", False,
|
|
"Whether to use whole word masking rather than per-WordPiece masking.")
|
|
|
|
flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.")
|
|
|
|
flags.DEFINE_integer("max_predictions_per_seq", 20,
|
|
"Maximum number of masked LM predictions per sequence.")
|
|
|
|
flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.")
|
|
|
|
flags.DEFINE_integer(
|
|
"dupe_factor", 10,
|
|
"Number of times to duplicate the input data (with different masks).")
|
|
|
|
flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.")
|
|
|
|
flags.DEFINE_float(
|
|
"short_seq_prob", 0.1,
|
|
"Probability of creating sequences which are shorter than the "
|
|
"maximum length.")
|
|
|
|
|
|
class TrainingInstance(object):
|
|
"""A single training instance (sentence pair)."""
|
|
|
|
def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels,
|
|
is_random_next):
|
|
self.tokens = tokens
|
|
self.segment_ids = segment_ids
|
|
self.is_random_next = is_random_next
|
|
self.masked_lm_positions = masked_lm_positions
|
|
self.masked_lm_labels = masked_lm_labels
|
|
|
|
def __str__(self):
|
|
s = ""
|
|
s += "tokens: %s\n" % (" ".join(
|
|
[tokenization.printable_text(x) for x in self.tokens]))
|
|
s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids]))
|
|
s += "is_random_next: %s\n" % self.is_random_next
|
|
s += "masked_lm_positions: %s\n" % (" ".join(
|
|
[str(x) for x in self.masked_lm_positions]))
|
|
s += "masked_lm_labels: %s\n" % (" ".join(
|
|
[tokenization.printable_text(x) for x in self.masked_lm_labels]))
|
|
s += "\n"
|
|
return s
|
|
|
|
def __repr__(self):
|
|
return self.__str__()
|
|
|
|
|
|
def write_instance_to_example_files(instances, tokenizer, max_seq_length,
|
|
max_predictions_per_seq, output_files):
|
|
"""Create TF example files from `TrainingInstance`s."""
|
|
writers = []
|
|
for output_file in output_files:
|
|
writers.append(tf.python_io.TFRecordWriter(output_file))
|
|
|
|
writer_index = 0
|
|
|
|
total_written = 0
|
|
for (inst_index, instance) in enumerate(instances):
|
|
input_ids = tokenizer.convert_tokens_to_ids(instance.tokens)
|
|
input_mask = [1] * len(input_ids)
|
|
segment_ids = list(instance.segment_ids)
|
|
assert len(input_ids) <= max_seq_length
|
|
|
|
while len(input_ids) < max_seq_length:
|
|
input_ids.append(0)
|
|
input_mask.append(0)
|
|
segment_ids.append(0)
|
|
|
|
assert len(input_ids) == max_seq_length
|
|
assert len(input_mask) == max_seq_length
|
|
assert len(segment_ids) == max_seq_length
|
|
|
|
masked_lm_positions = list(instance.masked_lm_positions)
|
|
masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels)
|
|
masked_lm_weights = [1.0] * len(masked_lm_ids)
|
|
|
|
while len(masked_lm_positions) < max_predictions_per_seq:
|
|
masked_lm_positions.append(0)
|
|
masked_lm_ids.append(0)
|
|
masked_lm_weights.append(0.0)
|
|
|
|
next_sentence_label = 1 if instance.is_random_next else 0
|
|
|
|
features = collections.OrderedDict()
|
|
features["input_ids"] = create_int_feature(input_ids)
|
|
features["input_mask"] = create_int_feature(input_mask)
|
|
features["segment_ids"] = create_int_feature(segment_ids)
|
|
features["masked_lm_positions"] = create_int_feature(masked_lm_positions)
|
|
features["masked_lm_ids"] = create_int_feature(masked_lm_ids)
|
|
features["masked_lm_weights"] = create_float_feature(masked_lm_weights)
|
|
features["next_sentence_labels"] = create_int_feature([next_sentence_label])
|
|
|
|
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
|
|
|
|
writers[writer_index].write(tf_example.SerializeToString())
|
|
writer_index = (writer_index + 1) % len(writers)
|
|
|
|
total_written += 1
|
|
|
|
if inst_index < 20:
|
|
tf.logging.info("*** Example ***")
|
|
tf.logging.info("tokens: %s" % " ".join(
|
|
[tokenization.printable_text(x) for x in instance.tokens]))
|
|
|
|
for feature_name in features.keys():
|
|
feature = features[feature_name]
|
|
values = []
|
|
if feature.int64_list.value:
|
|
values = feature.int64_list.value
|
|
elif feature.float_list.value:
|
|
values = feature.float_list.value
|
|
tf.logging.info(
|
|
"%s: %s" % (feature_name, " ".join([str(x) for x in values])))
|
|
|
|
for writer in writers:
|
|
writer.close()
|
|
|
|
tf.logging.info("Wrote %d total instances", total_written)
|
|
|
|
|
|
def create_int_feature(values):
|
|
feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
|
|
return feature
|
|
|
|
|
|
def create_float_feature(values):
|
|
feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
|
|
return feature
|
|
|
|
|
|
def create_training_instances(input_files, tokenizer, max_seq_length,
|
|
dupe_factor, short_seq_prob, masked_lm_prob,
|
|
max_predictions_per_seq, rng):
|
|
"""Create `TrainingInstance`s from raw text."""
|
|
all_documents = [[]]
|
|
|
|
# Input file format:
|
|
# (1) One sentence per line. These should ideally be actual sentences, not
|
|
# entire paragraphs or arbitrary spans of text. (Because we use the
|
|
# sentence boundaries for the "next sentence prediction" task).
|
|
# (2) Blank lines between documents. Document boundaries are needed so
|
|
# that the "next sentence prediction" task doesn't span between documents.
|
|
for input_file in input_files:
|
|
with tf.gfile.GFile(input_file, "r") as reader:
|
|
while True:
|
|
line = tokenization.convert_to_unicode(reader.readline())
|
|
if not line:
|
|
break
|
|
line = line.strip()
|
|
|
|
# Empty lines are used as document delimiters
|
|
if not line:
|
|
all_documents.append([])
|
|
tokens = tokenizer.tokenize(line)
|
|
if tokens:
|
|
all_documents[-1].append(tokens)
|
|
|
|
# Remove empty documents
|
|
all_documents = [x for x in all_documents if x]
|
|
rng.shuffle(all_documents)
|
|
|
|
vocab_words = list(tokenizer.vocab.keys())
|
|
instances = []
|
|
for _ in range(dupe_factor):
|
|
for document_index in range(len(all_documents)):
|
|
instances.extend(
|
|
create_instances_from_document(
|
|
all_documents, document_index, max_seq_length, short_seq_prob,
|
|
masked_lm_prob, max_predictions_per_seq, vocab_words, rng))
|
|
|
|
rng.shuffle(instances)
|
|
return instances
|
|
|
|
|
|
def create_instances_from_document(
|
|
all_documents, document_index, max_seq_length, short_seq_prob,
|
|
masked_lm_prob, max_predictions_per_seq, vocab_words, rng):
|
|
"""Creates `TrainingInstance`s for a single document."""
|
|
document = all_documents[document_index]
|
|
|
|
# Account for [CLS], [SEP], [SEP]
|
|
max_num_tokens = max_seq_length - 3
|
|
|
|
# We *usually* want to fill up the entire sequence since we are padding
|
|
# to `max_seq_length` anyways, so short sequences are generally wasted
|
|
# computation. However, we *sometimes*
|
|
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
|
|
# sequences to minimize the mismatch between pre-training and fine-tuning.
|
|
# The `target_seq_length` is just a rough target however, whereas
|
|
# `max_seq_length` is a hard limit.
|
|
target_seq_length = max_num_tokens
|
|
if rng.random() < short_seq_prob:
|
|
target_seq_length = rng.randint(2, max_num_tokens)
|
|
|
|
# We DON'T just concatenate all of the tokens from a document into a long
|
|
# sequence and choose an arbitrary split point because this would make the
|
|
# next sentence prediction task too easy. Instead, we split the input into
|
|
# segments "A" and "B" based on the actual "sentences" provided by the user
|
|
# input.
|
|
instances = []
|
|
current_chunk = []
|
|
current_length = 0
|
|
i = 0
|
|
while i < len(document):
|
|
segment = document[i]
|
|
current_chunk.append(segment)
|
|
current_length += len(segment)
|
|
if i == len(document) - 1 or current_length >= target_seq_length:
|
|
if current_chunk:
|
|
# `a_end` is how many segments from `current_chunk` go into the `A`
|
|
# (first) sentence.
|
|
a_end = 1
|
|
if len(current_chunk) >= 2:
|
|
a_end = rng.randint(1, len(current_chunk) - 1)
|
|
|
|
tokens_a = []
|
|
for j in range(a_end):
|
|
tokens_a.extend(current_chunk[j])
|
|
|
|
tokens_b = []
|
|
# Random next
|
|
is_random_next = False
|
|
if len(current_chunk) == 1 or rng.random() < 0.5:
|
|
is_random_next = True
|
|
target_b_length = target_seq_length - len(tokens_a)
|
|
|
|
# This should rarely go for more than one iteration for large
|
|
# corpora. However, just to be careful, we try to make sure that
|
|
# the random document is not the same as the document
|
|
# we're processing.
|
|
for _ in range(10):
|
|
random_document_index = rng.randint(0, len(all_documents) - 1)
|
|
if random_document_index != document_index:
|
|
break
|
|
|
|
random_document = all_documents[random_document_index]
|
|
random_start = rng.randint(0, len(random_document) - 1)
|
|
for j in range(random_start, len(random_document)):
|
|
tokens_b.extend(random_document[j])
|
|
if len(tokens_b) >= target_b_length:
|
|
break
|
|
# We didn't actually use these segments so we "put them back" so
|
|
# they don't go to waste.
|
|
num_unused_segments = len(current_chunk) - a_end
|
|
i -= num_unused_segments
|
|
# Actual next
|
|
else:
|
|
is_random_next = False
|
|
for j in range(a_end, len(current_chunk)):
|
|
tokens_b.extend(current_chunk[j])
|
|
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng)
|
|
|
|
assert len(tokens_a) >= 1
|
|
assert len(tokens_b) >= 1
|
|
|
|
tokens = []
|
|
segment_ids = []
|
|
tokens.append("[CLS]")
|
|
segment_ids.append(0)
|
|
for token in tokens_a:
|
|
tokens.append(token)
|
|
segment_ids.append(0)
|
|
|
|
tokens.append("[SEP]")
|
|
segment_ids.append(0)
|
|
|
|
for token in tokens_b:
|
|
tokens.append(token)
|
|
segment_ids.append(1)
|
|
tokens.append("[SEP]")
|
|
segment_ids.append(1)
|
|
|
|
(tokens, masked_lm_positions,
|
|
masked_lm_labels) = create_masked_lm_predictions(
|
|
tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng)
|
|
instance = TrainingInstance(
|
|
tokens=tokens,
|
|
segment_ids=segment_ids,
|
|
is_random_next=is_random_next,
|
|
masked_lm_positions=masked_lm_positions,
|
|
masked_lm_labels=masked_lm_labels)
|
|
instances.append(instance)
|
|
current_chunk = []
|
|
current_length = 0
|
|
i += 1
|
|
|
|
return instances
|
|
|
|
|
|
MaskedLmInstance = collections.namedtuple("MaskedLmInstance",
|
|
["index", "label"])
|
|
|
|
|
|
def create_masked_lm_predictions(tokens, masked_lm_prob,
|
|
max_predictions_per_seq, vocab_words, rng):
|
|
"""Creates the predictions for the masked LM objective."""
|
|
|
|
cand_indexes = []
|
|
for (i, token) in enumerate(tokens):
|
|
if token == "[CLS]" or token == "[SEP]":
|
|
continue
|
|
# Whole Word Masking means that if we mask all of the wordpieces
|
|
# corresponding to an original word. When a word has been split into
|
|
# WordPieces, the first token does not have any marker and any subsequence
|
|
# tokens are prefixed with ##. So whenever we see the ## token, we
|
|
# append it to the previous set of word indexes.
|
|
#
|
|
# Note that Whole Word Masking does *not* change the training code
|
|
# at all -- we still predict each WordPiece independently, softmaxed
|
|
# over the entire vocabulary.
|
|
if (FLAGS.do_whole_word_mask and len(cand_indexes) >= 1 and
|
|
token.startswith("##")):
|
|
cand_indexes[-1].append(i)
|
|
else:
|
|
cand_indexes.append([i])
|
|
|
|
rng.shuffle(cand_indexes)
|
|
|
|
output_tokens = list(tokens)
|
|
|
|
num_to_predict = min(max_predictions_per_seq,
|
|
max(1, int(round(len(tokens) * masked_lm_prob))))
|
|
|
|
masked_lms = []
|
|
covered_indexes = set()
|
|
for index_set in cand_indexes:
|
|
if len(masked_lms) >= num_to_predict:
|
|
break
|
|
# If adding a whole-word mask would exceed the maximum number of
|
|
# predictions, then just skip this candidate.
|
|
if len(masked_lms) + len(index_set) > num_to_predict:
|
|
continue
|
|
is_any_index_covered = False
|
|
for index in index_set:
|
|
if index in covered_indexes:
|
|
is_any_index_covered = True
|
|
break
|
|
if is_any_index_covered:
|
|
continue
|
|
for index in index_set:
|
|
covered_indexes.add(index)
|
|
|
|
masked_token = None
|
|
# 80% of the time, replace with [MASK]
|
|
if rng.random() < 0.8:
|
|
masked_token = "[MASK]"
|
|
else:
|
|
# 10% of the time, keep original
|
|
if rng.random() < 0.5:
|
|
masked_token = tokens[index]
|
|
# 10% of the time, replace with random word
|
|
else:
|
|
masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)]
|
|
|
|
output_tokens[index] = masked_token
|
|
|
|
masked_lms.append(MaskedLmInstance(index=index, label=tokens[index]))
|
|
assert len(masked_lms) <= num_to_predict
|
|
masked_lms = sorted(masked_lms, key=lambda x: x.index)
|
|
|
|
masked_lm_positions = []
|
|
masked_lm_labels = []
|
|
for p in masked_lms:
|
|
masked_lm_positions.append(p.index)
|
|
masked_lm_labels.append(p.label)
|
|
|
|
return (output_tokens, masked_lm_positions, masked_lm_labels)
|
|
|
|
|
|
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng):
|
|
"""Truncates a pair of sequences to a maximum sequence length."""
|
|
while True:
|
|
total_length = len(tokens_a) + len(tokens_b)
|
|
if total_length <= max_num_tokens:
|
|
break
|
|
|
|
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
|
|
assert len(trunc_tokens) >= 1
|
|
|
|
# We want to sometimes truncate from the front and sometimes from the
|
|
# back to add more randomness and avoid biases.
|
|
if rng.random() < 0.5:
|
|
del trunc_tokens[0]
|
|
else:
|
|
trunc_tokens.pop()
|
|
|
|
|
|
def main(_):
|
|
tf.logging.set_verbosity(tf.logging.INFO)
|
|
|
|
tokenizer = tokenization.FullTokenizer(
|
|
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
|
|
|
|
input_files = []
|
|
for input_pattern in FLAGS.input_file.split(","):
|
|
input_files.extend(tf.gfile.Glob(input_pattern))
|
|
|
|
tf.logging.info("*** Reading from input files ***")
|
|
for input_file in input_files:
|
|
tf.logging.info(" %s", input_file)
|
|
|
|
rng = random.Random(FLAGS.random_seed)
|
|
instances = create_training_instances(
|
|
input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor,
|
|
FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq,
|
|
rng)
|
|
|
|
output_files = FLAGS.output_file.split(",")
|
|
tf.logging.info("*** Writing to output files ***")
|
|
for output_file in output_files:
|
|
tf.logging.info(" %s", output_file)
|
|
|
|
write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length,
|
|
FLAGS.max_predictions_per_seq, output_files)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
flags.mark_flag_as_required("input_file")
|
|
flags.mark_flag_as_required("output_file")
|
|
flags.mark_flag_as_required("vocab_file")
|
|
tf.app.run()
|