494 lines
18 KiB
Python
494 lines
18 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2018 The Google AI Language Team Authors.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Run masked LM/next sentence masked_lm pre-training for BERT."""
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import modeling
|
||
|
import optimization
|
||
|
import tensorflow as tf
|
||
|
|
||
|
flags = tf.flags
|
||
|
|
||
|
FLAGS = flags.FLAGS
|
||
|
|
||
|
## Required parameters
|
||
|
flags.DEFINE_string(
|
||
|
"bert_config_file", None,
|
||
|
"The config json file corresponding to the pre-trained BERT model. "
|
||
|
"This specifies the model architecture.")
|
||
|
|
||
|
flags.DEFINE_string(
|
||
|
"input_file", None,
|
||
|
"Input TF example files (can be a glob or comma separated).")
|
||
|
|
||
|
flags.DEFINE_string(
|
||
|
"output_dir", None,
|
||
|
"The output directory where the model checkpoints will be written.")
|
||
|
|
||
|
## Other parameters
|
||
|
flags.DEFINE_string(
|
||
|
"init_checkpoint", None,
|
||
|
"Initial checkpoint (usually from a pre-trained BERT model).")
|
||
|
|
||
|
flags.DEFINE_integer(
|
||
|
"max_seq_length", 128,
|
||
|
"The maximum total input sequence length after WordPiece tokenization. "
|
||
|
"Sequences longer than this will be truncated, and sequences shorter "
|
||
|
"than this will be padded. Must match data generation.")
|
||
|
|
||
|
flags.DEFINE_integer(
|
||
|
"max_predictions_per_seq", 20,
|
||
|
"Maximum number of masked LM predictions per sequence. "
|
||
|
"Must match data generation.")
|
||
|
|
||
|
flags.DEFINE_bool("do_train", False, "Whether to run training.")
|
||
|
|
||
|
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
|
||
|
|
||
|
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
|
||
|
|
||
|
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
|
||
|
|
||
|
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
|
||
|
|
||
|
flags.DEFINE_integer("num_train_steps", 100000, "Number of training steps.")
|
||
|
|
||
|
flags.DEFINE_integer("num_warmup_steps", 10000, "Number of warmup steps.")
|
||
|
|
||
|
flags.DEFINE_integer("save_checkpoints_steps", 1000,
|
||
|
"How often to save the model checkpoint.")
|
||
|
|
||
|
flags.DEFINE_integer("iterations_per_loop", 1000,
|
||
|
"How many steps to make in each estimator call.")
|
||
|
|
||
|
flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.")
|
||
|
|
||
|
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
|
||
|
|
||
|
tf.flags.DEFINE_string(
|
||
|
"tpu_name", None,
|
||
|
"The Cloud TPU to use for training. This should be either the name "
|
||
|
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
|
||
|
"url.")
|
||
|
|
||
|
tf.flags.DEFINE_string(
|
||
|
"tpu_zone", None,
|
||
|
"[Optional] GCE zone where the Cloud TPU is located in. If not "
|
||
|
"specified, we will attempt to automatically detect the GCE project from "
|
||
|
"metadata.")
|
||
|
|
||
|
tf.flags.DEFINE_string(
|
||
|
"gcp_project", None,
|
||
|
"[Optional] Project name for the Cloud TPU-enabled project. If not "
|
||
|
"specified, we will attempt to automatically detect the GCE project from "
|
||
|
"metadata.")
|
||
|
|
||
|
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
|
||
|
|
||
|
flags.DEFINE_integer(
|
||
|
"num_tpu_cores", 8,
|
||
|
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
|
||
|
|
||
|
|
||
|
def model_fn_builder(bert_config, init_checkpoint, learning_rate,
|
||
|
num_train_steps, num_warmup_steps, use_tpu,
|
||
|
use_one_hot_embeddings):
|
||
|
"""Returns `model_fn` closure for TPUEstimator."""
|
||
|
|
||
|
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
|
||
|
"""The `model_fn` for TPUEstimator."""
|
||
|
|
||
|
tf.logging.info("*** Features ***")
|
||
|
for name in sorted(features.keys()):
|
||
|
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
|
||
|
|
||
|
input_ids = features["input_ids"]
|
||
|
input_mask = features["input_mask"]
|
||
|
segment_ids = features["segment_ids"]
|
||
|
masked_lm_positions = features["masked_lm_positions"]
|
||
|
masked_lm_ids = features["masked_lm_ids"]
|
||
|
masked_lm_weights = features["masked_lm_weights"]
|
||
|
next_sentence_labels = features["next_sentence_labels"]
|
||
|
|
||
|
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
|
||
|
|
||
|
model = modeling.BertModel(
|
||
|
config=bert_config,
|
||
|
is_training=is_training,
|
||
|
input_ids=input_ids,
|
||
|
input_mask=input_mask,
|
||
|
token_type_ids=segment_ids,
|
||
|
use_one_hot_embeddings=use_one_hot_embeddings)
|
||
|
|
||
|
(masked_lm_loss,
|
||
|
masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
|
||
|
bert_config, model.get_sequence_output(), model.get_embedding_table(),
|
||
|
masked_lm_positions, masked_lm_ids, masked_lm_weights)
|
||
|
|
||
|
(next_sentence_loss, next_sentence_example_loss,
|
||
|
next_sentence_log_probs) = get_next_sentence_output(
|
||
|
bert_config, model.get_pooled_output(), next_sentence_labels)
|
||
|
|
||
|
total_loss = masked_lm_loss + next_sentence_loss
|
||
|
|
||
|
tvars = tf.trainable_variables()
|
||
|
|
||
|
initialized_variable_names = {}
|
||
|
scaffold_fn = None
|
||
|
if init_checkpoint:
|
||
|
(assignment_map, initialized_variable_names
|
||
|
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
|
||
|
if use_tpu:
|
||
|
|
||
|
def tpu_scaffold():
|
||
|
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
|
||
|
return tf.train.Scaffold()
|
||
|
|
||
|
scaffold_fn = tpu_scaffold
|
||
|
else:
|
||
|
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
|
||
|
|
||
|
tf.logging.info("**** Trainable Variables ****")
|
||
|
for var in tvars:
|
||
|
init_string = ""
|
||
|
if var.name in initialized_variable_names:
|
||
|
init_string = ", *INIT_FROM_CKPT*"
|
||
|
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
|
||
|
init_string)
|
||
|
|
||
|
output_spec = None
|
||
|
if mode == tf.estimator.ModeKeys.TRAIN:
|
||
|
train_op = optimization.create_optimizer(
|
||
|
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
|
||
|
|
||
|
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
|
||
|
mode=mode,
|
||
|
loss=total_loss,
|
||
|
train_op=train_op,
|
||
|
scaffold_fn=scaffold_fn)
|
||
|
elif mode == tf.estimator.ModeKeys.EVAL:
|
||
|
|
||
|
def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
|
||
|
masked_lm_weights, next_sentence_example_loss,
|
||
|
next_sentence_log_probs, next_sentence_labels):
|
||
|
"""Computes the loss and accuracy of the model."""
|
||
|
masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
|
||
|
[-1, masked_lm_log_probs.shape[-1]])
|
||
|
masked_lm_predictions = tf.argmax(
|
||
|
masked_lm_log_probs, axis=-1, output_type=tf.int32)
|
||
|
masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
|
||
|
masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
|
||
|
masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
|
||
|
masked_lm_accuracy = tf.metrics.accuracy(
|
||
|
labels=masked_lm_ids,
|
||
|
predictions=masked_lm_predictions,
|
||
|
weights=masked_lm_weights)
|
||
|
masked_lm_mean_loss = tf.metrics.mean(
|
||
|
values=masked_lm_example_loss, weights=masked_lm_weights)
|
||
|
|
||
|
next_sentence_log_probs = tf.reshape(
|
||
|
next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
|
||
|
next_sentence_predictions = tf.argmax(
|
||
|
next_sentence_log_probs, axis=-1, output_type=tf.int32)
|
||
|
next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
|
||
|
next_sentence_accuracy = tf.metrics.accuracy(
|
||
|
labels=next_sentence_labels, predictions=next_sentence_predictions)
|
||
|
next_sentence_mean_loss = tf.metrics.mean(
|
||
|
values=next_sentence_example_loss)
|
||
|
|
||
|
return {
|
||
|
"masked_lm_accuracy": masked_lm_accuracy,
|
||
|
"masked_lm_loss": masked_lm_mean_loss,
|
||
|
"next_sentence_accuracy": next_sentence_accuracy,
|
||
|
"next_sentence_loss": next_sentence_mean_loss,
|
||
|
}
|
||
|
|
||
|
eval_metrics = (metric_fn, [
|
||
|
masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
|
||
|
masked_lm_weights, next_sentence_example_loss,
|
||
|
next_sentence_log_probs, next_sentence_labels
|
||
|
])
|
||
|
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
|
||
|
mode=mode,
|
||
|
loss=total_loss,
|
||
|
eval_metrics=eval_metrics,
|
||
|
scaffold_fn=scaffold_fn)
|
||
|
else:
|
||
|
raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))
|
||
|
|
||
|
return output_spec
|
||
|
|
||
|
return model_fn
|
||
|
|
||
|
|
||
|
def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
|
||
|
label_ids, label_weights):
|
||
|
"""Get loss and log probs for the masked LM."""
|
||
|
input_tensor = gather_indexes(input_tensor, positions)
|
||
|
|
||
|
with tf.variable_scope("cls/predictions"):
|
||
|
# We apply one more non-linear transformation before the output layer.
|
||
|
# This matrix is not used after pre-training.
|
||
|
with tf.variable_scope("transform"):
|
||
|
input_tensor = tf.layers.dense(
|
||
|
input_tensor,
|
||
|
units=bert_config.hidden_size,
|
||
|
activation=modeling.get_activation(bert_config.hidden_act),
|
||
|
kernel_initializer=modeling.create_initializer(
|
||
|
bert_config.initializer_range))
|
||
|
input_tensor = modeling.layer_norm(input_tensor)
|
||
|
|
||
|
# The output weights are the same as the input embeddings, but there is
|
||
|
# an output-only bias for each token.
|
||
|
output_bias = tf.get_variable(
|
||
|
"output_bias",
|
||
|
shape=[bert_config.vocab_size],
|
||
|
initializer=tf.zeros_initializer())
|
||
|
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
|
||
|
logits = tf.nn.bias_add(logits, output_bias)
|
||
|
log_probs = tf.nn.log_softmax(logits, axis=-1)
|
||
|
|
||
|
label_ids = tf.reshape(label_ids, [-1])
|
||
|
label_weights = tf.reshape(label_weights, [-1])
|
||
|
|
||
|
one_hot_labels = tf.one_hot(
|
||
|
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
|
||
|
|
||
|
# The `positions` tensor might be zero-padded (if the sequence is too
|
||
|
# short to have the maximum number of predictions). The `label_weights`
|
||
|
# tensor has a value of 1.0 for every real prediction and 0.0 for the
|
||
|
# padding predictions.
|
||
|
per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
|
||
|
numerator = tf.reduce_sum(label_weights * per_example_loss)
|
||
|
denominator = tf.reduce_sum(label_weights) + 1e-5
|
||
|
loss = numerator / denominator
|
||
|
|
||
|
return (loss, per_example_loss, log_probs)
|
||
|
|
||
|
|
||
|
def get_next_sentence_output(bert_config, input_tensor, labels):
|
||
|
"""Get loss and log probs for the next sentence prediction."""
|
||
|
|
||
|
# Simple binary classification. Note that 0 is "next sentence" and 1 is
|
||
|
# "random sentence". This weight matrix is not used after pre-training.
|
||
|
with tf.variable_scope("cls/seq_relationship"):
|
||
|
output_weights = tf.get_variable(
|
||
|
"output_weights",
|
||
|
shape=[2, bert_config.hidden_size],
|
||
|
initializer=modeling.create_initializer(bert_config.initializer_range))
|
||
|
output_bias = tf.get_variable(
|
||
|
"output_bias", shape=[2], initializer=tf.zeros_initializer())
|
||
|
|
||
|
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
|
||
|
logits = tf.nn.bias_add(logits, output_bias)
|
||
|
log_probs = tf.nn.log_softmax(logits, axis=-1)
|
||
|
labels = tf.reshape(labels, [-1])
|
||
|
one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
|
||
|
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
|
||
|
loss = tf.reduce_mean(per_example_loss)
|
||
|
return (loss, per_example_loss, log_probs)
|
||
|
|
||
|
|
||
|
def gather_indexes(sequence_tensor, positions):
|
||
|
"""Gathers the vectors at the specific positions over a minibatch."""
|
||
|
sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3)
|
||
|
batch_size = sequence_shape[0]
|
||
|
seq_length = sequence_shape[1]
|
||
|
width = sequence_shape[2]
|
||
|
|
||
|
flat_offsets = tf.reshape(
|
||
|
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
|
||
|
flat_positions = tf.reshape(positions + flat_offsets, [-1])
|
||
|
flat_sequence_tensor = tf.reshape(sequence_tensor,
|
||
|
[batch_size * seq_length, width])
|
||
|
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
|
||
|
return output_tensor
|
||
|
|
||
|
|
||
|
def input_fn_builder(input_files,
|
||
|
max_seq_length,
|
||
|
max_predictions_per_seq,
|
||
|
is_training,
|
||
|
num_cpu_threads=4):
|
||
|
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
|
||
|
|
||
|
def input_fn(params):
|
||
|
"""The actual input function."""
|
||
|
batch_size = params["batch_size"]
|
||
|
|
||
|
name_to_features = {
|
||
|
"input_ids":
|
||
|
tf.FixedLenFeature([max_seq_length], tf.int64),
|
||
|
"input_mask":
|
||
|
tf.FixedLenFeature([max_seq_length], tf.int64),
|
||
|
"segment_ids":
|
||
|
tf.FixedLenFeature([max_seq_length], tf.int64),
|
||
|
"masked_lm_positions":
|
||
|
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
|
||
|
"masked_lm_ids":
|
||
|
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
|
||
|
"masked_lm_weights":
|
||
|
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
|
||
|
"next_sentence_labels":
|
||
|
tf.FixedLenFeature([1], tf.int64),
|
||
|
}
|
||
|
|
||
|
# For training, we want a lot of parallel reading and shuffling.
|
||
|
# For eval, we want no shuffling and parallel reading doesn't matter.
|
||
|
if is_training:
|
||
|
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
|
||
|
d = d.repeat()
|
||
|
d = d.shuffle(buffer_size=len(input_files))
|
||
|
|
||
|
# `cycle_length` is the number of parallel files that get read.
|
||
|
cycle_length = min(num_cpu_threads, len(input_files))
|
||
|
|
||
|
# `sloppy` mode means that the interleaving is not exact. This adds
|
||
|
# even more randomness to the training pipeline.
|
||
|
d = d.apply(
|
||
|
tf.contrib.data.parallel_interleave(
|
||
|
tf.data.TFRecordDataset,
|
||
|
sloppy=is_training,
|
||
|
cycle_length=cycle_length))
|
||
|
d = d.shuffle(buffer_size=100)
|
||
|
else:
|
||
|
d = tf.data.TFRecordDataset(input_files)
|
||
|
# Since we evaluate for a fixed number of steps we don't want to encounter
|
||
|
# out-of-range exceptions.
|
||
|
d = d.repeat()
|
||
|
|
||
|
# We must `drop_remainder` on training because the TPU requires fixed
|
||
|
# size dimensions. For eval, we assume we are evaluating on the CPU or GPU
|
||
|
# and we *don't* want to drop the remainder, otherwise we wont cover
|
||
|
# every sample.
|
||
|
d = d.apply(
|
||
|
tf.contrib.data.map_and_batch(
|
||
|
lambda record: _decode_record(record, name_to_features),
|
||
|
batch_size=batch_size,
|
||
|
num_parallel_batches=num_cpu_threads,
|
||
|
drop_remainder=True))
|
||
|
return d
|
||
|
|
||
|
return input_fn
|
||
|
|
||
|
|
||
|
def _decode_record(record, name_to_features):
|
||
|
"""Decodes a record to a TensorFlow example."""
|
||
|
example = tf.parse_single_example(record, name_to_features)
|
||
|
|
||
|
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
|
||
|
# So cast all int64 to int32.
|
||
|
for name in list(example.keys()):
|
||
|
t = example[name]
|
||
|
if t.dtype == tf.int64:
|
||
|
t = tf.to_int32(t)
|
||
|
example[name] = t
|
||
|
|
||
|
return example
|
||
|
|
||
|
|
||
|
def main(_):
|
||
|
tf.logging.set_verbosity(tf.logging.INFO)
|
||
|
|
||
|
if not FLAGS.do_train and not FLAGS.do_eval:
|
||
|
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
|
||
|
|
||
|
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
|
||
|
|
||
|
tf.gfile.MakeDirs(FLAGS.output_dir)
|
||
|
|
||
|
input_files = []
|
||
|
for input_pattern in FLAGS.input_file.split(","):
|
||
|
input_files.extend(tf.gfile.Glob(input_pattern))
|
||
|
|
||
|
tf.logging.info("*** Input Files ***")
|
||
|
for input_file in input_files:
|
||
|
tf.logging.info(" %s" % input_file)
|
||
|
|
||
|
tpu_cluster_resolver = None
|
||
|
if FLAGS.use_tpu and FLAGS.tpu_name:
|
||
|
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
|
||
|
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
|
||
|
|
||
|
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
|
||
|
run_config = tf.contrib.tpu.RunConfig(
|
||
|
cluster=tpu_cluster_resolver,
|
||
|
master=FLAGS.master,
|
||
|
model_dir=FLAGS.output_dir,
|
||
|
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
|
||
|
tpu_config=tf.contrib.tpu.TPUConfig(
|
||
|
iterations_per_loop=FLAGS.iterations_per_loop,
|
||
|
num_shards=FLAGS.num_tpu_cores,
|
||
|
per_host_input_for_training=is_per_host))
|
||
|
|
||
|
model_fn = model_fn_builder(
|
||
|
bert_config=bert_config,
|
||
|
init_checkpoint=FLAGS.init_checkpoint,
|
||
|
learning_rate=FLAGS.learning_rate,
|
||
|
num_train_steps=FLAGS.num_train_steps,
|
||
|
num_warmup_steps=FLAGS.num_warmup_steps,
|
||
|
use_tpu=FLAGS.use_tpu,
|
||
|
use_one_hot_embeddings=FLAGS.use_tpu)
|
||
|
|
||
|
# If TPU is not available, this will fall back to normal Estimator on CPU
|
||
|
# or GPU.
|
||
|
estimator = tf.contrib.tpu.TPUEstimator(
|
||
|
use_tpu=FLAGS.use_tpu,
|
||
|
model_fn=model_fn,
|
||
|
config=run_config,
|
||
|
train_batch_size=FLAGS.train_batch_size,
|
||
|
eval_batch_size=FLAGS.eval_batch_size)
|
||
|
|
||
|
if FLAGS.do_train:
|
||
|
tf.logging.info("***** Running training *****")
|
||
|
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
|
||
|
train_input_fn = input_fn_builder(
|
||
|
input_files=input_files,
|
||
|
max_seq_length=FLAGS.max_seq_length,
|
||
|
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
|
||
|
is_training=True)
|
||
|
estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)
|
||
|
|
||
|
if FLAGS.do_eval:
|
||
|
tf.logging.info("***** Running evaluation *****")
|
||
|
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
|
||
|
|
||
|
eval_input_fn = input_fn_builder(
|
||
|
input_files=input_files,
|
||
|
max_seq_length=FLAGS.max_seq_length,
|
||
|
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
|
||
|
is_training=False)
|
||
|
|
||
|
result = estimator.evaluate(
|
||
|
input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)
|
||
|
|
||
|
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
|
||
|
with tf.gfile.GFile(output_eval_file, "w") as writer:
|
||
|
tf.logging.info("***** Eval results *****")
|
||
|
for key in sorted(result.keys()):
|
||
|
tf.logging.info(" %s = %s", key, str(result[key]))
|
||
|
writer.write("%s = %s\n" % (key, str(result[key])))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
flags.mark_flag_as_required("input_file")
|
||
|
flags.mark_flag_as_required("bert_config_file")
|
||
|
flags.mark_flag_as_required("output_dir")
|
||
|
tf.app.run()
|