987 lines
37 KiB
Python
987 lines
37 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2018 The Google AI Language Team Authors.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""The main BERT model and related functions."""
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import collections
|
||
|
import copy
|
||
|
import json
|
||
|
import math
|
||
|
import re
|
||
|
import numpy as np
|
||
|
import six
|
||
|
import tensorflow as tf
|
||
|
|
||
|
|
||
|
class BertConfig(object):
|
||
|
"""Configuration for `BertModel`."""
|
||
|
|
||
|
def __init__(self,
|
||
|
vocab_size,
|
||
|
hidden_size=768,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
intermediate_size=3072,
|
||
|
hidden_act="gelu",
|
||
|
hidden_dropout_prob=0.1,
|
||
|
attention_probs_dropout_prob=0.1,
|
||
|
max_position_embeddings=512,
|
||
|
type_vocab_size=16,
|
||
|
initializer_range=0.02):
|
||
|
"""Constructs BertConfig.
|
||
|
|
||
|
Args:
|
||
|
vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
|
||
|
hidden_size: Size of the encoder layers and the pooler layer.
|
||
|
num_hidden_layers: Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads: Number of attention heads for each attention layer in
|
||
|
the Transformer encoder.
|
||
|
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
|
||
|
layer in the Transformer encoder.
|
||
|
hidden_act: The non-linear activation function (function or string) in the
|
||
|
encoder and pooler.
|
||
|
hidden_dropout_prob: The dropout probability for all fully connected
|
||
|
layers in the embeddings, encoder, and pooler.
|
||
|
attention_probs_dropout_prob: The dropout ratio for the attention
|
||
|
probabilities.
|
||
|
max_position_embeddings: The maximum sequence length that this model might
|
||
|
ever be used with. Typically set this to something large just in case
|
||
|
(e.g., 512 or 1024 or 2048).
|
||
|
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
|
||
|
`BertModel`.
|
||
|
initializer_range: The stdev of the truncated_normal_initializer for
|
||
|
initializing all weight matrices.
|
||
|
"""
|
||
|
self.vocab_size = vocab_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.hidden_act = hidden_act
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.hidden_dropout_prob = hidden_dropout_prob
|
||
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.type_vocab_size = type_vocab_size
|
||
|
self.initializer_range = initializer_range
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, json_object):
|
||
|
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
|
||
|
config = BertConfig(vocab_size=None)
|
||
|
for (key, value) in six.iteritems(json_object):
|
||
|
config.__dict__[key] = value
|
||
|
return config
|
||
|
|
||
|
@classmethod
|
||
|
def from_json_file(cls, json_file):
|
||
|
"""Constructs a `BertConfig` from a json file of parameters."""
|
||
|
with tf.gfile.GFile(json_file, "r") as reader:
|
||
|
text = reader.read()
|
||
|
return cls.from_dict(json.loads(text))
|
||
|
|
||
|
def to_dict(self):
|
||
|
"""Serializes this instance to a Python dictionary."""
|
||
|
output = copy.deepcopy(self.__dict__)
|
||
|
return output
|
||
|
|
||
|
def to_json_string(self):
|
||
|
"""Serializes this instance to a JSON string."""
|
||
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|
||
|
|
||
|
|
||
|
class BertModel(object):
|
||
|
"""BERT model ("Bidirectional Encoder Representations from Transformers").
|
||
|
|
||
|
Example usage:
|
||
|
|
||
|
```python
|
||
|
# Already been converted into WordPiece token ids
|
||
|
input_ids = tf.constant([[31, 51, 99], [15, 5, 0]])
|
||
|
input_mask = tf.constant([[1, 1, 1], [1, 1, 0]])
|
||
|
token_type_ids = tf.constant([[0, 0, 1], [0, 2, 0]])
|
||
|
|
||
|
config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
|
||
|
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
|
||
|
|
||
|
model = modeling.BertModel(config=config, is_training=True,
|
||
|
input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type_ids)
|
||
|
|
||
|
label_embeddings = tf.get_variable(...)
|
||
|
pooled_output = model.get_pooled_output()
|
||
|
logits = tf.matmul(pooled_output, label_embeddings)
|
||
|
...
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
config,
|
||
|
is_training,
|
||
|
input_ids,
|
||
|
input_mask=None,
|
||
|
token_type_ids=None,
|
||
|
use_one_hot_embeddings=False,
|
||
|
scope=None):
|
||
|
"""Constructor for BertModel.
|
||
|
|
||
|
Args:
|
||
|
config: `BertConfig` instance.
|
||
|
is_training: bool. true for training model, false for eval model. Controls
|
||
|
whether dropout will be applied.
|
||
|
input_ids: int32 Tensor of shape [batch_size, seq_length].
|
||
|
input_mask: (optional) int32 Tensor of shape [batch_size, seq_length].
|
||
|
token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
|
||
|
use_one_hot_embeddings: (optional) bool. Whether to use one-hot word
|
||
|
embeddings or tf.embedding_lookup() for the word embeddings.
|
||
|
scope: (optional) variable scope. Defaults to "bert".
|
||
|
|
||
|
Raises:
|
||
|
ValueError: The config is invalid or one of the input tensor shapes
|
||
|
is invalid.
|
||
|
"""
|
||
|
config = copy.deepcopy(config)
|
||
|
if not is_training:
|
||
|
config.hidden_dropout_prob = 0.0
|
||
|
config.attention_probs_dropout_prob = 0.0
|
||
|
|
||
|
input_shape = get_shape_list(input_ids, expected_rank=2)
|
||
|
batch_size = input_shape[0]
|
||
|
seq_length = input_shape[1]
|
||
|
|
||
|
if input_mask is None:
|
||
|
input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)
|
||
|
|
||
|
if token_type_ids is None:
|
||
|
token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)
|
||
|
|
||
|
with tf.variable_scope(scope, default_name="bert"):
|
||
|
with tf.variable_scope("embeddings"):
|
||
|
# Perform embedding lookup on the word ids.
|
||
|
(self.embedding_output, self.embedding_table) = embedding_lookup(
|
||
|
input_ids=input_ids,
|
||
|
vocab_size=config.vocab_size,
|
||
|
embedding_size=config.hidden_size,
|
||
|
initializer_range=config.initializer_range,
|
||
|
word_embedding_name="word_embeddings",
|
||
|
use_one_hot_embeddings=use_one_hot_embeddings)
|
||
|
|
||
|
# Add positional embeddings and token type embeddings, then layer
|
||
|
# normalize and perform dropout.
|
||
|
self.embedding_output = embedding_postprocessor(
|
||
|
input_tensor=self.embedding_output,
|
||
|
use_token_type=True,
|
||
|
token_type_ids=token_type_ids,
|
||
|
token_type_vocab_size=config.type_vocab_size,
|
||
|
token_type_embedding_name="token_type_embeddings",
|
||
|
use_position_embeddings=True,
|
||
|
position_embedding_name="position_embeddings",
|
||
|
initializer_range=config.initializer_range,
|
||
|
max_position_embeddings=config.max_position_embeddings,
|
||
|
dropout_prob=config.hidden_dropout_prob)
|
||
|
|
||
|
with tf.variable_scope("encoder"):
|
||
|
# This converts a 2D mask of shape [batch_size, seq_length] to a 3D
|
||
|
# mask of shape [batch_size, seq_length, seq_length] which is used
|
||
|
# for the attention scores.
|
||
|
attention_mask = create_attention_mask_from_input_mask(
|
||
|
input_ids, input_mask)
|
||
|
|
||
|
# Run the stacked transformer.
|
||
|
# `sequence_output` shape = [batch_size, seq_length, hidden_size].
|
||
|
self.all_encoder_layers = transformer_model(
|
||
|
input_tensor=self.embedding_output,
|
||
|
attention_mask=attention_mask,
|
||
|
hidden_size=config.hidden_size,
|
||
|
num_hidden_layers=config.num_hidden_layers,
|
||
|
num_attention_heads=config.num_attention_heads,
|
||
|
intermediate_size=config.intermediate_size,
|
||
|
intermediate_act_fn=get_activation(config.hidden_act),
|
||
|
hidden_dropout_prob=config.hidden_dropout_prob,
|
||
|
attention_probs_dropout_prob=config.attention_probs_dropout_prob,
|
||
|
initializer_range=config.initializer_range,
|
||
|
do_return_all_layers=True)
|
||
|
|
||
|
self.sequence_output = self.all_encoder_layers[-1]
|
||
|
# The "pooler" converts the encoded sequence tensor of shape
|
||
|
# [batch_size, seq_length, hidden_size] to a tensor of shape
|
||
|
# [batch_size, hidden_size]. This is necessary for segment-level
|
||
|
# (or segment-pair-level) classification tasks where we need a fixed
|
||
|
# dimensional representation of the segment.
|
||
|
with tf.variable_scope("pooler"):
|
||
|
# We "pool" the model by simply taking the hidden state corresponding
|
||
|
# to the first token. We assume that this has been pre-trained
|
||
|
first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)
|
||
|
self.pooled_output = tf.layers.dense(
|
||
|
first_token_tensor,
|
||
|
config.hidden_size,
|
||
|
activation=tf.tanh,
|
||
|
kernel_initializer=create_initializer(config.initializer_range))
|
||
|
|
||
|
def get_pooled_output(self):
|
||
|
return self.pooled_output
|
||
|
|
||
|
def get_sequence_output(self):
|
||
|
"""Gets final hidden layer of encoder.
|
||
|
|
||
|
Returns:
|
||
|
float Tensor of shape [batch_size, seq_length, hidden_size] corresponding
|
||
|
to the final hidden of the transformer encoder.
|
||
|
"""
|
||
|
return self.sequence_output
|
||
|
|
||
|
def get_all_encoder_layers(self):
|
||
|
return self.all_encoder_layers
|
||
|
|
||
|
def get_embedding_output(self):
|
||
|
"""Gets output of the embedding lookup (i.e., input to the transformer).
|
||
|
|
||
|
Returns:
|
||
|
float Tensor of shape [batch_size, seq_length, hidden_size] corresponding
|
||
|
to the output of the embedding layer, after summing the word
|
||
|
embeddings with the positional embeddings and the token type embeddings,
|
||
|
then performing layer normalization. This is the input to the transformer.
|
||
|
"""
|
||
|
return self.embedding_output
|
||
|
|
||
|
def get_embedding_table(self):
|
||
|
return self.embedding_table
|
||
|
|
||
|
|
||
|
def gelu(x):
|
||
|
"""Gaussian Error Linear Unit.
|
||
|
|
||
|
This is a smoother version of the RELU.
|
||
|
Original paper: https://arxiv.org/abs/1606.08415
|
||
|
Args:
|
||
|
x: float Tensor to perform activation.
|
||
|
|
||
|
Returns:
|
||
|
`x` with the GELU activation applied.
|
||
|
"""
|
||
|
cdf = 0.5 * (1.0 + tf.tanh(
|
||
|
(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
|
||
|
return x * cdf
|
||
|
|
||
|
|
||
|
def get_activation(activation_string):
|
||
|
"""Maps a string to a Python function, e.g., "relu" => `tf.nn.relu`.
|
||
|
|
||
|
Args:
|
||
|
activation_string: String name of the activation function.
|
||
|
|
||
|
Returns:
|
||
|
A Python function corresponding to the activation function. If
|
||
|
`activation_string` is None, empty, or "linear", this will return None.
|
||
|
If `activation_string` is not a string, it will return `activation_string`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: The `activation_string` does not correspond to a known
|
||
|
activation.
|
||
|
"""
|
||
|
|
||
|
# We assume that anything that"s not a string is already an activation
|
||
|
# function, so we just return it.
|
||
|
if not isinstance(activation_string, six.string_types):
|
||
|
return activation_string
|
||
|
|
||
|
if not activation_string:
|
||
|
return None
|
||
|
|
||
|
act = activation_string.lower()
|
||
|
if act == "linear":
|
||
|
return None
|
||
|
elif act == "relu":
|
||
|
return tf.nn.relu
|
||
|
elif act == "gelu":
|
||
|
return gelu
|
||
|
elif act == "tanh":
|
||
|
return tf.tanh
|
||
|
else:
|
||
|
raise ValueError("Unsupported activation: %s" % act)
|
||
|
|
||
|
|
||
|
def get_assignment_map_from_checkpoint(tvars, init_checkpoint):
|
||
|
"""Compute the union of the current variables and checkpoint variables."""
|
||
|
assignment_map = {}
|
||
|
initialized_variable_names = {}
|
||
|
|
||
|
name_to_variable = collections.OrderedDict()
|
||
|
for var in tvars:
|
||
|
name = var.name
|
||
|
m = re.match("^(.*):\\d+$", name)
|
||
|
if m is not None:
|
||
|
name = m.group(1)
|
||
|
name_to_variable[name] = var
|
||
|
|
||
|
init_vars = tf.train.list_variables(init_checkpoint)
|
||
|
|
||
|
assignment_map = collections.OrderedDict()
|
||
|
for x in init_vars:
|
||
|
(name, var) = (x[0], x[1])
|
||
|
if name not in name_to_variable:
|
||
|
continue
|
||
|
assignment_map[name] = name
|
||
|
initialized_variable_names[name] = 1
|
||
|
initialized_variable_names[name + ":0"] = 1
|
||
|
|
||
|
return (assignment_map, initialized_variable_names)
|
||
|
|
||
|
|
||
|
def dropout(input_tensor, dropout_prob):
|
||
|
"""Perform dropout.
|
||
|
|
||
|
Args:
|
||
|
input_tensor: float Tensor.
|
||
|
dropout_prob: Python float. The probability of dropping out a value (NOT of
|
||
|
*keeping* a dimension as in `tf.nn.dropout`).
|
||
|
|
||
|
Returns:
|
||
|
A version of `input_tensor` with dropout applied.
|
||
|
"""
|
||
|
if dropout_prob is None or dropout_prob == 0.0:
|
||
|
return input_tensor
|
||
|
|
||
|
output = tf.nn.dropout(input_tensor, 1.0 - dropout_prob)
|
||
|
return output
|
||
|
|
||
|
|
||
|
def layer_norm(input_tensor, name=None):
|
||
|
"""Run layer normalization on the last dimension of the tensor."""
|
||
|
return tf.contrib.layers.layer_norm(
|
||
|
inputs=input_tensor, begin_norm_axis=-1, begin_params_axis=-1, scope=name)
|
||
|
|
||
|
|
||
|
def layer_norm_and_dropout(input_tensor, dropout_prob, name=None):
|
||
|
"""Runs layer normalization followed by dropout."""
|
||
|
output_tensor = layer_norm(input_tensor, name)
|
||
|
output_tensor = dropout(output_tensor, dropout_prob)
|
||
|
return output_tensor
|
||
|
|
||
|
|
||
|
def create_initializer(initializer_range=0.02):
|
||
|
"""Creates a `truncated_normal_initializer` with the given range."""
|
||
|
return tf.truncated_normal_initializer(stddev=initializer_range)
|
||
|
|
||
|
|
||
|
def embedding_lookup(input_ids,
|
||
|
vocab_size,
|
||
|
embedding_size=128,
|
||
|
initializer_range=0.02,
|
||
|
word_embedding_name="word_embeddings",
|
||
|
use_one_hot_embeddings=False):
|
||
|
"""Looks up words embeddings for id tensor.
|
||
|
|
||
|
Args:
|
||
|
input_ids: int32 Tensor of shape [batch_size, seq_length] containing word
|
||
|
ids.
|
||
|
vocab_size: int. Size of the embedding vocabulary.
|
||
|
embedding_size: int. Width of the word embeddings.
|
||
|
initializer_range: float. Embedding initialization range.
|
||
|
word_embedding_name: string. Name of the embedding table.
|
||
|
use_one_hot_embeddings: bool. If True, use one-hot method for word
|
||
|
embeddings. If False, use `tf.gather()`.
|
||
|
|
||
|
Returns:
|
||
|
float Tensor of shape [batch_size, seq_length, embedding_size].
|
||
|
"""
|
||
|
# This function assumes that the input is of shape [batch_size, seq_length,
|
||
|
# num_inputs].
|
||
|
#
|
||
|
# If the input is a 2D tensor of shape [batch_size, seq_length], we
|
||
|
# reshape to [batch_size, seq_length, 1].
|
||
|
if input_ids.shape.ndims == 2:
|
||
|
input_ids = tf.expand_dims(input_ids, axis=[-1])
|
||
|
|
||
|
embedding_table = tf.get_variable(
|
||
|
name=word_embedding_name,
|
||
|
shape=[vocab_size, embedding_size],
|
||
|
initializer=create_initializer(initializer_range))
|
||
|
|
||
|
flat_input_ids = tf.reshape(input_ids, [-1])
|
||
|
if use_one_hot_embeddings:
|
||
|
one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
|
||
|
output = tf.matmul(one_hot_input_ids, embedding_table)
|
||
|
else:
|
||
|
output = tf.gather(embedding_table, flat_input_ids)
|
||
|
|
||
|
input_shape = get_shape_list(input_ids)
|
||
|
|
||
|
output = tf.reshape(output,
|
||
|
input_shape[0:-1] + [input_shape[-1] * embedding_size])
|
||
|
return (output, embedding_table)
|
||
|
|
||
|
|
||
|
def embedding_postprocessor(input_tensor,
|
||
|
use_token_type=False,
|
||
|
token_type_ids=None,
|
||
|
token_type_vocab_size=16,
|
||
|
token_type_embedding_name="token_type_embeddings",
|
||
|
use_position_embeddings=True,
|
||
|
position_embedding_name="position_embeddings",
|
||
|
initializer_range=0.02,
|
||
|
max_position_embeddings=512,
|
||
|
dropout_prob=0.1):
|
||
|
"""Performs various post-processing on a word embedding tensor.
|
||
|
|
||
|
Args:
|
||
|
input_tensor: float Tensor of shape [batch_size, seq_length,
|
||
|
embedding_size].
|
||
|
use_token_type: bool. Whether to add embeddings for `token_type_ids`.
|
||
|
token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
|
||
|
Must be specified if `use_token_type` is True.
|
||
|
token_type_vocab_size: int. The vocabulary size of `token_type_ids`.
|
||
|
token_type_embedding_name: string. The name of the embedding table variable
|
||
|
for token type ids.
|
||
|
use_position_embeddings: bool. Whether to add position embeddings for the
|
||
|
position of each token in the sequence.
|
||
|
position_embedding_name: string. The name of the embedding table variable
|
||
|
for positional embeddings.
|
||
|
initializer_range: float. Range of the weight initialization.
|
||
|
max_position_embeddings: int. Maximum sequence length that might ever be
|
||
|
used with this model. This can be longer than the sequence length of
|
||
|
input_tensor, but cannot be shorter.
|
||
|
dropout_prob: float. Dropout probability applied to the final output tensor.
|
||
|
|
||
|
Returns:
|
||
|
float tensor with same shape as `input_tensor`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: One of the tensor shapes or input values is invalid.
|
||
|
"""
|
||
|
input_shape = get_shape_list(input_tensor, expected_rank=3)
|
||
|
batch_size = input_shape[0]
|
||
|
seq_length = input_shape[1]
|
||
|
width = input_shape[2]
|
||
|
|
||
|
output = input_tensor
|
||
|
|
||
|
if use_token_type:
|
||
|
if token_type_ids is None:
|
||
|
raise ValueError("`token_type_ids` must be specified if"
|
||
|
"`use_token_type` is True.")
|
||
|
token_type_table = tf.get_variable(
|
||
|
name=token_type_embedding_name,
|
||
|
shape=[token_type_vocab_size, width],
|
||
|
initializer=create_initializer(initializer_range))
|
||
|
# This vocab will be small so we always do one-hot here, since it is always
|
||
|
# faster for a small vocabulary.
|
||
|
flat_token_type_ids = tf.reshape(token_type_ids, [-1])
|
||
|
one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
|
||
|
token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
|
||
|
token_type_embeddings = tf.reshape(token_type_embeddings,
|
||
|
[batch_size, seq_length, width])
|
||
|
output += token_type_embeddings
|
||
|
|
||
|
if use_position_embeddings:
|
||
|
assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)
|
||
|
with tf.control_dependencies([assert_op]):
|
||
|
full_position_embeddings = tf.get_variable(
|
||
|
name=position_embedding_name,
|
||
|
shape=[max_position_embeddings, width],
|
||
|
initializer=create_initializer(initializer_range))
|
||
|
# Since the position embedding table is a learned variable, we create it
|
||
|
# using a (long) sequence length `max_position_embeddings`. The actual
|
||
|
# sequence length might be shorter than this, for faster training of
|
||
|
# tasks that do not have long sequences.
|
||
|
#
|
||
|
# So `full_position_embeddings` is effectively an embedding table
|
||
|
# for position [0, 1, 2, ..., max_position_embeddings-1], and the current
|
||
|
# sequence has positions [0, 1, 2, ... seq_length-1], so we can just
|
||
|
# perform a slice.
|
||
|
position_embeddings = tf.slice(full_position_embeddings, [0, 0],
|
||
|
[seq_length, -1])
|
||
|
num_dims = len(output.shape.as_list())
|
||
|
|
||
|
# Only the last two dimensions are relevant (`seq_length` and `width`), so
|
||
|
# we broadcast among the first dimensions, which is typically just
|
||
|
# the batch size.
|
||
|
position_broadcast_shape = []
|
||
|
for _ in range(num_dims - 2):
|
||
|
position_broadcast_shape.append(1)
|
||
|
position_broadcast_shape.extend([seq_length, width])
|
||
|
position_embeddings = tf.reshape(position_embeddings,
|
||
|
position_broadcast_shape)
|
||
|
output += position_embeddings
|
||
|
|
||
|
output = layer_norm_and_dropout(output, dropout_prob)
|
||
|
return output
|
||
|
|
||
|
|
||
|
def create_attention_mask_from_input_mask(from_tensor, to_mask):
|
||
|
"""Create 3D attention mask from a 2D tensor mask.
|
||
|
|
||
|
Args:
|
||
|
from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
|
||
|
to_mask: int32 Tensor of shape [batch_size, to_seq_length].
|
||
|
|
||
|
Returns:
|
||
|
float Tensor of shape [batch_size, from_seq_length, to_seq_length].
|
||
|
"""
|
||
|
from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
|
||
|
batch_size = from_shape[0]
|
||
|
from_seq_length = from_shape[1]
|
||
|
|
||
|
to_shape = get_shape_list(to_mask, expected_rank=2)
|
||
|
to_seq_length = to_shape[1]
|
||
|
|
||
|
to_mask = tf.cast(
|
||
|
tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32)
|
||
|
|
||
|
# We don't assume that `from_tensor` is a mask (although it could be). We
|
||
|
# don't actually care if we attend *from* padding tokens (only *to* padding)
|
||
|
# tokens so we create a tensor of all ones.
|
||
|
#
|
||
|
# `broadcast_ones` = [batch_size, from_seq_length, 1]
|
||
|
broadcast_ones = tf.ones(
|
||
|
shape=[batch_size, from_seq_length, 1], dtype=tf.float32)
|
||
|
|
||
|
# Here we broadcast along two dimensions to create the mask.
|
||
|
mask = broadcast_ones * to_mask
|
||
|
|
||
|
return mask
|
||
|
|
||
|
|
||
|
def attention_layer(from_tensor,
|
||
|
to_tensor,
|
||
|
attention_mask=None,
|
||
|
num_attention_heads=1,
|
||
|
size_per_head=512,
|
||
|
query_act=None,
|
||
|
key_act=None,
|
||
|
value_act=None,
|
||
|
attention_probs_dropout_prob=0.0,
|
||
|
initializer_range=0.02,
|
||
|
do_return_2d_tensor=False,
|
||
|
batch_size=None,
|
||
|
from_seq_length=None,
|
||
|
to_seq_length=None):
|
||
|
"""Performs multi-headed attention from `from_tensor` to `to_tensor`.
|
||
|
|
||
|
This is an implementation of multi-headed attention based on "Attention
|
||
|
is all you Need". If `from_tensor` and `to_tensor` are the same, then
|
||
|
this is self-attention. Each timestep in `from_tensor` attends to the
|
||
|
corresponding sequence in `to_tensor`, and returns a fixed-with vector.
|
||
|
|
||
|
This function first projects `from_tensor` into a "query" tensor and
|
||
|
`to_tensor` into "key" and "value" tensors. These are (effectively) a list
|
||
|
of tensors of length `num_attention_heads`, where each tensor is of shape
|
||
|
[batch_size, seq_length, size_per_head].
|
||
|
|
||
|
Then, the query and key tensors are dot-producted and scaled. These are
|
||
|
softmaxed to obtain attention probabilities. The value tensors are then
|
||
|
interpolated by these probabilities, then concatenated back to a single
|
||
|
tensor and returned.
|
||
|
|
||
|
In practice, the multi-headed attention are done with transposes and
|
||
|
reshapes rather than actual separate tensors.
|
||
|
|
||
|
Args:
|
||
|
from_tensor: float Tensor of shape [batch_size, from_seq_length,
|
||
|
from_width].
|
||
|
to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width].
|
||
|
attention_mask: (optional) int32 Tensor of shape [batch_size,
|
||
|
from_seq_length, to_seq_length]. The values should be 1 or 0. The
|
||
|
attention scores will effectively be set to -infinity for any positions in
|
||
|
the mask that are 0, and will be unchanged for positions that are 1.
|
||
|
num_attention_heads: int. Number of attention heads.
|
||
|
size_per_head: int. Size of each attention head.
|
||
|
query_act: (optional) Activation function for the query transform.
|
||
|
key_act: (optional) Activation function for the key transform.
|
||
|
value_act: (optional) Activation function for the value transform.
|
||
|
attention_probs_dropout_prob: (optional) float. Dropout probability of the
|
||
|
attention probabilities.
|
||
|
initializer_range: float. Range of the weight initializer.
|
||
|
do_return_2d_tensor: bool. If True, the output will be of shape [batch_size
|
||
|
* from_seq_length, num_attention_heads * size_per_head]. If False, the
|
||
|
output will be of shape [batch_size, from_seq_length, num_attention_heads
|
||
|
* size_per_head].
|
||
|
batch_size: (Optional) int. If the input is 2D, this might be the batch size
|
||
|
of the 3D version of the `from_tensor` and `to_tensor`.
|
||
|
from_seq_length: (Optional) If the input is 2D, this might be the seq length
|
||
|
of the 3D version of the `from_tensor`.
|
||
|
to_seq_length: (Optional) If the input is 2D, this might be the seq length
|
||
|
of the 3D version of the `to_tensor`.
|
||
|
|
||
|
Returns:
|
||
|
float Tensor of shape [batch_size, from_seq_length,
|
||
|
num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is
|
||
|
true, this will be of shape [batch_size * from_seq_length,
|
||
|
num_attention_heads * size_per_head]).
|
||
|
|
||
|
Raises:
|
||
|
ValueError: Any of the arguments or tensor shapes are invalid.
|
||
|
"""
|
||
|
|
||
|
def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
|
||
|
seq_length, width):
|
||
|
output_tensor = tf.reshape(
|
||
|
input_tensor, [batch_size, seq_length, num_attention_heads, width])
|
||
|
|
||
|
output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3])
|
||
|
return output_tensor
|
||
|
|
||
|
from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
|
||
|
to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])
|
||
|
|
||
|
if len(from_shape) != len(to_shape):
|
||
|
raise ValueError(
|
||
|
"The rank of `from_tensor` must match the rank of `to_tensor`.")
|
||
|
|
||
|
if len(from_shape) == 3:
|
||
|
batch_size = from_shape[0]
|
||
|
from_seq_length = from_shape[1]
|
||
|
to_seq_length = to_shape[1]
|
||
|
elif len(from_shape) == 2:
|
||
|
if (batch_size is None or from_seq_length is None or to_seq_length is None):
|
||
|
raise ValueError(
|
||
|
"When passing in rank 2 tensors to attention_layer, the values "
|
||
|
"for `batch_size`, `from_seq_length`, and `to_seq_length` "
|
||
|
"must all be specified.")
|
||
|
|
||
|
# Scalar dimensions referenced here:
|
||
|
# B = batch size (number of sequences)
|
||
|
# F = `from_tensor` sequence length
|
||
|
# T = `to_tensor` sequence length
|
||
|
# N = `num_attention_heads`
|
||
|
# H = `size_per_head`
|
||
|
|
||
|
from_tensor_2d = reshape_to_matrix(from_tensor)
|
||
|
to_tensor_2d = reshape_to_matrix(to_tensor)
|
||
|
|
||
|
# `query_layer` = [B*F, N*H]
|
||
|
query_layer = tf.layers.dense(
|
||
|
from_tensor_2d,
|
||
|
num_attention_heads * size_per_head,
|
||
|
activation=query_act,
|
||
|
name="query",
|
||
|
kernel_initializer=create_initializer(initializer_range))
|
||
|
|
||
|
# `key_layer` = [B*T, N*H]
|
||
|
key_layer = tf.layers.dense(
|
||
|
to_tensor_2d,
|
||
|
num_attention_heads * size_per_head,
|
||
|
activation=key_act,
|
||
|
name="key",
|
||
|
kernel_initializer=create_initializer(initializer_range))
|
||
|
|
||
|
# `value_layer` = [B*T, N*H]
|
||
|
value_layer = tf.layers.dense(
|
||
|
to_tensor_2d,
|
||
|
num_attention_heads * size_per_head,
|
||
|
activation=value_act,
|
||
|
name="value",
|
||
|
kernel_initializer=create_initializer(initializer_range))
|
||
|
|
||
|
# `query_layer` = [B, N, F, H]
|
||
|
query_layer = transpose_for_scores(query_layer, batch_size,
|
||
|
num_attention_heads, from_seq_length,
|
||
|
size_per_head)
|
||
|
|
||
|
# `key_layer` = [B, N, T, H]
|
||
|
key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
|
||
|
to_seq_length, size_per_head)
|
||
|
|
||
|
# Take the dot product between "query" and "key" to get the raw
|
||
|
# attention scores.
|
||
|
# `attention_scores` = [B, N, F, T]
|
||
|
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
|
||
|
attention_scores = tf.multiply(attention_scores,
|
||
|
1.0 / math.sqrt(float(size_per_head)))
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
# `attention_mask` = [B, 1, F, T]
|
||
|
attention_mask = tf.expand_dims(attention_mask, axis=[1])
|
||
|
|
||
|
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||
|
# masked positions, this operation will create a tensor which is 0.0 for
|
||
|
# positions we want to attend and -10000.0 for masked positions.
|
||
|
adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0
|
||
|
|
||
|
# Since we are adding it to the raw scores before the softmax, this is
|
||
|
# effectively the same as removing these entirely.
|
||
|
attention_scores += adder
|
||
|
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
# `attention_probs` = [B, N, F, T]
|
||
|
attention_probs = tf.nn.softmax(attention_scores)
|
||
|
|
||
|
# This is actually dropping out entire tokens to attend to, which might
|
||
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
|
attention_probs = dropout(attention_probs, attention_probs_dropout_prob)
|
||
|
|
||
|
# `value_layer` = [B, T, N, H]
|
||
|
value_layer = tf.reshape(
|
||
|
value_layer,
|
||
|
[batch_size, to_seq_length, num_attention_heads, size_per_head])
|
||
|
|
||
|
# `value_layer` = [B, N, T, H]
|
||
|
value_layer = tf.transpose(value_layer, [0, 2, 1, 3])
|
||
|
|
||
|
# `context_layer` = [B, N, F, H]
|
||
|
context_layer = tf.matmul(attention_probs, value_layer)
|
||
|
|
||
|
# `context_layer` = [B, F, N, H]
|
||
|
context_layer = tf.transpose(context_layer, [0, 2, 1, 3])
|
||
|
|
||
|
if do_return_2d_tensor:
|
||
|
# `context_layer` = [B*F, N*H]
|
||
|
context_layer = tf.reshape(
|
||
|
context_layer,
|
||
|
[batch_size * from_seq_length, num_attention_heads * size_per_head])
|
||
|
else:
|
||
|
# `context_layer` = [B, F, N*H]
|
||
|
context_layer = tf.reshape(
|
||
|
context_layer,
|
||
|
[batch_size, from_seq_length, num_attention_heads * size_per_head])
|
||
|
|
||
|
return context_layer
|
||
|
|
||
|
|
||
|
def transformer_model(input_tensor,
|
||
|
attention_mask=None,
|
||
|
hidden_size=768,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
intermediate_size=3072,
|
||
|
intermediate_act_fn=gelu,
|
||
|
hidden_dropout_prob=0.1,
|
||
|
attention_probs_dropout_prob=0.1,
|
||
|
initializer_range=0.02,
|
||
|
do_return_all_layers=False):
|
||
|
"""Multi-headed, multi-layer Transformer from "Attention is All You Need".
|
||
|
|
||
|
This is almost an exact implementation of the original Transformer encoder.
|
||
|
|
||
|
See the original paper:
|
||
|
https://arxiv.org/abs/1706.03762
|
||
|
|
||
|
Also see:
|
||
|
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py
|
||
|
|
||
|
Args:
|
||
|
input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].
|
||
|
attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,
|
||
|
seq_length], with 1 for positions that can be attended to and 0 in
|
||
|
positions that should not be.
|
||
|
hidden_size: int. Hidden size of the Transformer.
|
||
|
num_hidden_layers: int. Number of layers (blocks) in the Transformer.
|
||
|
num_attention_heads: int. Number of attention heads in the Transformer.
|
||
|
intermediate_size: int. The size of the "intermediate" (a.k.a., feed
|
||
|
forward) layer.
|
||
|
intermediate_act_fn: function. The non-linear activation function to apply
|
||
|
to the output of the intermediate/feed-forward layer.
|
||
|
hidden_dropout_prob: float. Dropout probability for the hidden layers.
|
||
|
attention_probs_dropout_prob: float. Dropout probability of the attention
|
||
|
probabilities.
|
||
|
initializer_range: float. Range of the initializer (stddev of truncated
|
||
|
normal).
|
||
|
do_return_all_layers: Whether to also return all layers or just the final
|
||
|
layer.
|
||
|
|
||
|
Returns:
|
||
|
float Tensor of shape [batch_size, seq_length, hidden_size], the final
|
||
|
hidden layer of the Transformer.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: A Tensor shape or parameter is invalid.
|
||
|
"""
|
||
|
if hidden_size % num_attention_heads != 0:
|
||
|
raise ValueError(
|
||
|
"The hidden size (%d) is not a multiple of the number of attention "
|
||
|
"heads (%d)" % (hidden_size, num_attention_heads))
|
||
|
|
||
|
attention_head_size = int(hidden_size / num_attention_heads)
|
||
|
input_shape = get_shape_list(input_tensor, expected_rank=3)
|
||
|
batch_size = input_shape[0]
|
||
|
seq_length = input_shape[1]
|
||
|
input_width = input_shape[2]
|
||
|
|
||
|
# The Transformer performs sum residuals on all layers so the input needs
|
||
|
# to be the same as the hidden size.
|
||
|
if input_width != hidden_size:
|
||
|
raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
|
||
|
(input_width, hidden_size))
|
||
|
|
||
|
# We keep the representation as a 2D tensor to avoid re-shaping it back and
|
||
|
# forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on
|
||
|
# the GPU/CPU but may not be free on the TPU, so we want to minimize them to
|
||
|
# help the optimizer.
|
||
|
prev_output = reshape_to_matrix(input_tensor)
|
||
|
|
||
|
all_layer_outputs = []
|
||
|
for layer_idx in range(num_hidden_layers):
|
||
|
with tf.variable_scope("layer_%d" % layer_idx):
|
||
|
layer_input = prev_output
|
||
|
|
||
|
with tf.variable_scope("attention"):
|
||
|
attention_heads = []
|
||
|
with tf.variable_scope("self"):
|
||
|
attention_head = attention_layer(
|
||
|
from_tensor=layer_input,
|
||
|
to_tensor=layer_input,
|
||
|
attention_mask=attention_mask,
|
||
|
num_attention_heads=num_attention_heads,
|
||
|
size_per_head=attention_head_size,
|
||
|
attention_probs_dropout_prob=attention_probs_dropout_prob,
|
||
|
initializer_range=initializer_range,
|
||
|
do_return_2d_tensor=True,
|
||
|
batch_size=batch_size,
|
||
|
from_seq_length=seq_length,
|
||
|
to_seq_length=seq_length)
|
||
|
attention_heads.append(attention_head)
|
||
|
|
||
|
attention_output = None
|
||
|
if len(attention_heads) == 1:
|
||
|
attention_output = attention_heads[0]
|
||
|
else:
|
||
|
# In the case where we have other sequences, we just concatenate
|
||
|
# them to the self-attention head before the projection.
|
||
|
attention_output = tf.concat(attention_heads, axis=-1)
|
||
|
|
||
|
# Run a linear projection of `hidden_size` then add a residual
|
||
|
# with `layer_input`.
|
||
|
with tf.variable_scope("output"):
|
||
|
attention_output = tf.layers.dense(
|
||
|
attention_output,
|
||
|
hidden_size,
|
||
|
kernel_initializer=create_initializer(initializer_range))
|
||
|
attention_output = dropout(attention_output, hidden_dropout_prob)
|
||
|
attention_output = layer_norm(attention_output + layer_input)
|
||
|
|
||
|
# The activation is only applied to the "intermediate" hidden layer.
|
||
|
with tf.variable_scope("intermediate"):
|
||
|
intermediate_output = tf.layers.dense(
|
||
|
attention_output,
|
||
|
intermediate_size,
|
||
|
activation=intermediate_act_fn,
|
||
|
kernel_initializer=create_initializer(initializer_range))
|
||
|
|
||
|
# Down-project back to `hidden_size` then add the residual.
|
||
|
with tf.variable_scope("output"):
|
||
|
layer_output = tf.layers.dense(
|
||
|
intermediate_output,
|
||
|
hidden_size,
|
||
|
kernel_initializer=create_initializer(initializer_range))
|
||
|
layer_output = dropout(layer_output, hidden_dropout_prob)
|
||
|
layer_output = layer_norm(layer_output + attention_output)
|
||
|
prev_output = layer_output
|
||
|
all_layer_outputs.append(layer_output)
|
||
|
|
||
|
if do_return_all_layers:
|
||
|
final_outputs = []
|
||
|
for layer_output in all_layer_outputs:
|
||
|
final_output = reshape_from_matrix(layer_output, input_shape)
|
||
|
final_outputs.append(final_output)
|
||
|
return final_outputs
|
||
|
else:
|
||
|
final_output = reshape_from_matrix(prev_output, input_shape)
|
||
|
return final_output
|
||
|
|
||
|
|
||
|
def get_shape_list(tensor, expected_rank=None, name=None):
|
||
|
"""Returns a list of the shape of tensor, preferring static dimensions.
|
||
|
|
||
|
Args:
|
||
|
tensor: A tf.Tensor object to find the shape of.
|
||
|
expected_rank: (optional) int. The expected rank of `tensor`. If this is
|
||
|
specified and the `tensor` has a different rank, and exception will be
|
||
|
thrown.
|
||
|
name: Optional name of the tensor for the error message.
|
||
|
|
||
|
Returns:
|
||
|
A list of dimensions of the shape of tensor. All static dimensions will
|
||
|
be returned as python integers, and dynamic dimensions will be returned
|
||
|
as tf.Tensor scalars.
|
||
|
"""
|
||
|
if name is None:
|
||
|
name = tensor.name
|
||
|
|
||
|
if expected_rank is not None:
|
||
|
assert_rank(tensor, expected_rank, name)
|
||
|
|
||
|
shape = tensor.shape.as_list()
|
||
|
|
||
|
non_static_indexes = []
|
||
|
for (index, dim) in enumerate(shape):
|
||
|
if dim is None:
|
||
|
non_static_indexes.append(index)
|
||
|
|
||
|
if not non_static_indexes:
|
||
|
return shape
|
||
|
|
||
|
dyn_shape = tf.shape(tensor)
|
||
|
for index in non_static_indexes:
|
||
|
shape[index] = dyn_shape[index]
|
||
|
return shape
|
||
|
|
||
|
|
||
|
def reshape_to_matrix(input_tensor):
|
||
|
"""Reshapes a >= rank 2 tensor to a rank 2 tensor (i.e., a matrix)."""
|
||
|
ndims = input_tensor.shape.ndims
|
||
|
if ndims < 2:
|
||
|
raise ValueError("Input tensor must have at least rank 2. Shape = %s" %
|
||
|
(input_tensor.shape))
|
||
|
if ndims == 2:
|
||
|
return input_tensor
|
||
|
|
||
|
width = input_tensor.shape[-1]
|
||
|
output_tensor = tf.reshape(input_tensor, [-1, width])
|
||
|
return output_tensor
|
||
|
|
||
|
|
||
|
def reshape_from_matrix(output_tensor, orig_shape_list):
|
||
|
"""Reshapes a rank 2 tensor back to its original rank >= 2 tensor."""
|
||
|
if len(orig_shape_list) == 2:
|
||
|
return output_tensor
|
||
|
|
||
|
output_shape = get_shape_list(output_tensor)
|
||
|
|
||
|
orig_dims = orig_shape_list[0:-1]
|
||
|
width = output_shape[-1]
|
||
|
|
||
|
return tf.reshape(output_tensor, orig_dims + [width])
|
||
|
|
||
|
|
||
|
def assert_rank(tensor, expected_rank, name=None):
|
||
|
"""Raises an exception if the tensor rank is not of the expected rank.
|
||
|
|
||
|
Args:
|
||
|
tensor: A tf.Tensor to check the rank of.
|
||
|
expected_rank: Python integer or list of integers, expected rank.
|
||
|
name: Optional name of the tensor for the error message.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If the expected shape doesn't match the actual shape.
|
||
|
"""
|
||
|
if name is None:
|
||
|
name = tensor.name
|
||
|
|
||
|
expected_rank_dict = {}
|
||
|
if isinstance(expected_rank, six.integer_types):
|
||
|
expected_rank_dict[expected_rank] = True
|
||
|
else:
|
||
|
for x in expected_rank:
|
||
|
expected_rank_dict[x] = True
|
||
|
|
||
|
actual_rank = tensor.shape.ndims
|
||
|
if actual_rank not in expected_rank_dict:
|
||
|
scope_name = tf.get_variable_scope().name
|
||
|
raise ValueError(
|
||
|
"For the tensor `%s` in scope `%s`, the actual rank "
|
||
|
"`%d` (shape = %s) is not equal to the expected rank `%s`" %
|
||
|
(name, scope_name, actual_rank, str(tensor.shape), str(expected_rank)))
|