import runtime import model import csv from typing import List, Dict from datetime import datetime, timedelta, date import time import math import dataset_importer def orders_processor(orders: Dict[str, model.Order]) -> List[runtime.RuntimeProduct]: orders_list = list(orders.values()) sorted_orders_list = sorted(orders_list, key=lambda order: order.latest_end_time) products_lines = runtime.RuntimeProductLines() for sorted_order in sorted_orders_list: for item in sorted_order.products: runtime_product = runtime.RuntimeProduct(item["product"], item["amount"]) runtime_product.set_ddl_start(sorted_order.latest_end_time, sorted_order.earliest_start_time) products_lines.add_runtime_product(runtime_product) runtime_product = products_lines.pop_runtime_product() produce_tree = [] produce_list = [] while runtime_product is not None: search_semi_products(0, produce_tree, produce_list, runtime_product) runtime_product = products_lines.pop_runtime_product() return produce_list def search_semi_products(floor, produce_tree, produce_list, runtime_product): runtime_semi_products = [] produce_tree.append({"runtime_product": runtime_product, "runtime_semi_products": runtime_semi_products}) # print("F", runtime_product.product.product_id, runtime_product.ddl) if len(runtime_product.product.semi_products) > 0: for item in runtime_product.product.semi_products: runtime_semi_product = runtime.RuntimeProduct(item["semi_product"], item["amount"]) runtime_semi_product.set_ddl_start(runtime_product.ddl, runtime_product.start) # print("C", runtime_semi_product.product.product_id, runtime_semi_product.ddl) search_semi_products(floor + 1, runtime_semi_products, produce_list, runtime_semi_product) # print("L", floor, runtime_product.product.product_id, runtime_product.ddl) produce_list.append(runtime_product) def products_processor(runtime_products: List[runtime.RuntimeProduct]): runtime_products_processes_list: List[Dict[str, any]] = [] for runtime_product in runtime_products: processes_list: List[runtime.RuntimeProcess] = [] production_times: int = 0 for process in runtime_product.product.processes: # 执行工序的次数 process_number = math.ceil(float(runtime_product.amount) / float(process.max_quantity)) for i in range(process_number): runtime_process: runtime.RuntimeProcess = \ runtime.RuntimeProcess(runtime_product, process) production_times += runtime_process.process.pdt_time processes_list.append(runtime_process) runtime_product.set_delay(production_times) runtime_products_processes_list.append({"runtimeProduct": runtime_product, "runtimeProcess": processes_list}) runtime_products_processes_list = \ sorted(runtime_products_processes_list, key=lambda dict_item: (dict_item["runtimeProduct"].ddl, dict_item["runtimeProduct"].delay)) # 输出检查 for item in runtime_products_processes_list: for runtime_process in item["runtimeProcess"]: runtime_product: runtime.RuntimeProduct = item["runtimeProduct"] # print(runtime_product.product.product_id, runtime_product.delay, runtime_process.process.pcs_id) return runtime_products_processes_list def resource_processor(runtime_products_processes_list: List[Dict[str, any]], resource_pool: runtime.RuntimeResourcePool, start_time: datetime): could_alloc = True for item in runtime_products_processes_list: runtime_resource_needs: List[runtime.RuntimeResourceNeed] = [] for runtime_process in item["runtimeProcess"]: runtime_process: runtime.RuntimeProcess = runtime_process for resource_item in runtime_process.process.res_needs: resource_attr = resource_item["rcs_attr"] amount = resource_item["amount"] for i in range(amount): runtime_resource_need: runtime.RuntimeResourceNeed = runtime.RuntimeResourceNeed( runtime_process, resource_attr, runtime_process.process.workspace, start_time, start_time + timedelta(minutes=runtime_process.process.pdt_time)) runtime_resource_needs.append(runtime_resource_need) if resource_pool.try_alloc_resource(runtime_resource_needs): resource_pool.alloc_resource(runtime_resource_needs) else: while resource_pool.reset_earliest_free_start_time(runtime_resource_needs): resource_pool.try_alloc_resource(runtime_resource_needs) resource_pool.alloc_resource(runtime_resource_needs) for runtime_resource_need in runtime_resource_needs: if runtime_resource_need.could_alloc is False: could_alloc = False break return could_alloc if __name__ == "__main__": start_time: datetime = datetime.combine(date(2020, 8, 12), datetime.min.time()) m_orders, m_products, m_processes, m_resources = dataset_importer.import_dataset() resource_pool: runtime.RuntimeResourcePool = runtime.RuntimeResourcePool(m_resources.values(), start_time) produce_list = orders_processor(m_orders) rt_rcs_list = products_processor(produce_list) print(resource_processor(rt_rcs_list, resource_pool, start_time))