// SPDX-License-Identifier: GPL-2.0+ /* Copyright (C) 2009 - 2019 Broadcom */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../pci.h" /* BRCM_PCIE_CAP_REGS - Offset for the mandatory capability config regs */ #define BRCM_PCIE_CAP_REGS 0x00ac /* Broadcom STB PCIe Register Offsets */ #define PCIE_RC_CFG_VENDOR_VENDOR_SPECIFIC_REG1 0x0188 #define PCIE_RC_CFG_VENDOR_VENDOR_SPECIFIC_REG1_ENDIAN_MODE_BAR2_MASK 0xc #define PCIE_RC_CFG_VENDOR_SPECIFIC_REG1_LITTLE_ENDIAN 0x0 #define PCIE_RC_CFG_PRIV1_ID_VAL3 0x043c #define PCIE_RC_CFG_PRIV1_ID_VAL3_CLASS_CODE_MASK 0xffffff #define PCIE_RC_CFG_PRIV1_LINK_CAPABILITY 0x04dc #define PCIE_RC_CFG_PRIV1_LINK_CAPABILITY_MAX_LINK_WIDTH_MASK 0x1f0 #define PCIE_RC_CFG_PRIV1_LINK_CAPABILITY_ASPM_SUPPORT_MASK 0xc00 #define PCIE_RC_CFG_PRIV1_ROOT_CAP 0x4f8 #define PCIE_RC_CFG_PRIV1_ROOT_CAP_L1SS_MODE_MASK 0xf8 #define PCIE_RC_DL_MDIO_ADDR 0x1100 #define PCIE_RC_DL_MDIO_WR_DATA 0x1104 #define PCIE_RC_DL_MDIO_RD_DATA 0x1108 #define PCIE_RC_PL_REG_PHY_CTL_1 0x1804 #define PCIE_RC_PL_REG_PHY_CTL_1_REG_P2_POWERDOWN_ENA_NOSYNC_MASK 0x8 #define PCIE_RC_PL_PHY_CTL_15 0x184c #define PCIE_RC_PL_PHY_CTL_15_DIS_PLL_PD_MASK 0x400000 #define PCIE_RC_PL_PHY_CTL_15_PM_CLK_PERIOD_MASK 0xff #define PCIE_RC_PL_STATS_CTRL 0x1940 #define PCIE_RC_PL_STATS_CTRL_EN_MASK 0x1 #define PCIE_RC_PL_STATS_CTRL_LEN_MASK 0xfffffff0 #define PCIE_RC_PL_STATS_TXTLP_LO 0x1944 #define PCIE_RC_PL_STATS_TXTLP_HI 0x1948 #define PCIE_RC_PL_STATS_TXDLLP_LO 0x194c #define PCIE_RC_PL_STATS_TXDLLP_HI 0x1950 #define PCIE_RC_PL_STATS_RXTLP_LO 0x195c #define PCIE_RC_PL_STATS_RXTLP_HI 0x1960 #define PCIE_RC_PL_STATS_RXDLLP_LO 0x1964 #define PCIE_RC_PL_STATS_RXDLLP_HI 0x1968 #define PCIE_RC_PL_STATS_RXPL_ERR 0x1974 #define PCIE_RC_PL_STATS_RXDL_ERR 0x1978 #define PCIE_RC_PL_STATS_RXTL_ERR 0x197c #define PCIE_RC_PL_LTSSM_STATS_3 0x19b0 #define PCIE_RC_PL_LTSSM_STATS_3_TIME_L0S_MASK 0xffff0000 #define PCIE_RC_PL_LTSSM_STATS_3_TIME_RECOV_MASK 0x0000ffff #define PCIE_RC_PL_LTSSM_STATS_CNT 0x19b4 #define PCIE_RC_PL_LTSSM_STATS_CNT_L0S_FAIL_MASK 0xffff0000 #define PCIE_RC_PL_LTSSM_STATS_CNT_RECOV_MASK 0x0000ffff #define PCIE_RC_PL_LTSSM_HIST_0 0x1cec #define PCIE_RC_PL_LTSSM_HIST(n) \ (PCIE_RC_PL_LTSSM_HIST_0 + ((n) * 4)) #define PCIE_MISC_MISC_CTRL 0x4008 #define PCIE_MISC_MISC_CTRL_PCIE_RCB_64B_MODE_MASK 0x80 #define PCIE_MISC_MISC_CTRL_PCIE_RCB_MPS_MODE_MASK 0x400 #define PCIE_MISC_MISC_CTRL_SCB_ACCESS_EN_MASK 0x1000 #define PCIE_MISC_MISC_CTRL_CFG_READ_UR_MODE_MASK 0x2000 #define PCIE_MISC_MISC_CTRL_MAX_BURST_SIZE_MASK 0x300000 #define PCIE_MISC_MISC_CTRL_SCB0_SIZE_MASK 0xf8000000 #define PCIE_MISC_MISC_CTRL_SCB1_SIZE_MASK 0x07c00000 #define PCIE_MISC_MISC_CTRL_SCB2_SIZE_MASK 0x0000001f #define SCB_SIZE_MASK(x) PCIE_MISC_MISC_CTRL_SCB ## x ## _SIZE_MASK #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_LO 0x400c #define PCIE_MEM_WIN0_LO(win) \ PCIE_MISC_CPU_2_PCIE_MEM_WIN0_LO + ((win) * 8) #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_HI 0x4010 #define PCIE_MEM_WIN0_HI(win) \ PCIE_MISC_CPU_2_PCIE_MEM_WIN0_HI + ((win) * 8) /* * NOTE: You may see the term "BAR" in a number of register names used by * this driver. The term is an artifact of when the HW core was an * endpoint device (EP). Now it is a root complex (RC) and anywhere a * register has the term "BAR" it is related to an inbound window. */ #define PCIE_BRCM_MAX_INBOUND_WINS 16 #define PCIE_MISC_RC_BAR1_CONFIG_LO 0x402c #define PCIE_MISC_RC_BAR1_CONFIG_LO_SIZE_MASK 0x1f #define PCIE_MISC_RC_BAR4_CONFIG_LO 0x40d4 #define PCIE_MISC_MSI_BAR_CONFIG_LO 0x4044 #define PCIE_MISC_MSI_BAR_CONFIG_HI 0x4048 #define PCIE_MISC_MSI_DATA_CONFIG 0x404c #define PCIE_MISC_MSI_DATA_CONFIG_VAL_32 0xffe06540 #define PCIE_MISC_MSI_DATA_CONFIG_VAL_8 0xfff86540 #define PCIE_MISC_PCIE_CTRL 0x4064 #define PCIE_MISC_PCIE_CTRL_PCIE_L23_REQUEST_MASK 0x1 #define PCIE_MISC_PCIE_CTRL_PCIE_PERSTB_MASK 0x4 #define PCIE_MISC_PCIE_STATUS 0x4068 #define PCIE_MISC_PCIE_STATUS_PCIE_PORT_MASK 0x80 #define PCIE_MISC_PCIE_STATUS_PCIE_DL_ACTIVE_MASK 0x20 #define PCIE_MISC_PCIE_STATUS_PCIE_PHYLINKUP_MASK 0x10 #define PCIE_MISC_PCIE_STATUS_PCIE_LINK_IN_L23_MASK 0x40 #define PCIE_MISC_REVISION 0x406c #define BRCM_PCIE_HW_REV_33 0x0303 #define BRCM_PCIE_HW_REV_3_20 0x0320 #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT 0x4070 #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT_LIMIT_MASK 0xfff00000 #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT_BASE_MASK 0xfff0 #define PCIE_MEM_WIN0_BASE_LIMIT(win) \ PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT + ((win) * 4) #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_HI 0x4080 #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_HI_BASE_MASK 0xff #define PCIE_MEM_WIN0_BASE_HI(win) \ PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_HI + ((win) * 8) #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_LIMIT_HI 0x4084 #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_LIMIT_HI_LIMIT_MASK 0xff #define PCIE_MEM_WIN0_LIMIT_HI(win) \ PCIE_MISC_CPU_2_PCIE_MEM_WIN0_LIMIT_HI + ((win) * 8) #define PCIE_MISC_HARD_PCIE_HARD_DEBUG_CLKREQ_DEBUG_ENABLE_MASK 0x2 #define PCIE_MISC_HARD_PCIE_HARD_DEBUG_PERST_ASSERT_MASK 0x8 #define PCIE_MISC_HARD_PCIE_HARD_DEBUG_REFCLK_OVRD_ENABLE_MASK 0x10000 #define PCIE_MISC_HARD_PCIE_HARD_DEBUG_REFCLK_OVRD_OUT_MASK 0x100000 #define PCIE_MISC_HARD_PCIE_HARD_DEBUG_L1SS_ENABLE_MASK 0x200000 #define PCIE_MISC_HARD_PCIE_HARD_DEBUG_SERDES_IDDQ_MASK 0x08000000 #define PCIE_BMIPS_MISC_HARD_PCIE_HARD_DEBUG_SERDES_IDDQ_MASK 0x00800000 #define PCIE_CLKREQ_MASK \ (PCIE_MISC_HARD_PCIE_HARD_DEBUG_CLKREQ_DEBUG_ENABLE_MASK | \ PCIE_MISC_HARD_PCIE_HARD_DEBUG_REFCLK_OVRD_ENABLE_MASK | \ PCIE_MISC_HARD_PCIE_HARD_DEBUG_REFCLK_OVRD_OUT_MASK | \ PCIE_MISC_HARD_PCIE_HARD_DEBUG_L1SS_ENABLE_MASK) #define PCIE_MISC_UBUS_BAR1_CONFIG_REMAP 0x40ac #define PCIE_MISC_UBUS_BAR1_CONFIG_REMAP_ACCESS_EN_MASK BIT(0) #define PCIE_MISC_UBUS_BAR4_CONFIG_REMAP 0x410c #define PCIE_MSI_INTR2_BASE 0x4500 /* Offsets from INTR2_CPU and MSI_INTR2 BASE offsets */ #define MSI_INT_STATUS 0x0 #define MSI_INT_CLR 0x8 #define MSI_INT_MASK_SET 0x10 #define MSI_INT_MASK_CLR 0x14 #define PCIE_RGR1_SW_INIT_1_PERST_MASK 0x1 #define PCIE_RGR1_SW_INIT_1_PERST_SHIFT 0x0 #define RGR1_SW_INIT_1_INIT_GENERIC_MASK 0x2 #define RGR1_SW_INIT_1_INIT_GENERIC_SHIFT 0x1 #define RGR1_SW_INIT_1_INIT_7278_MASK 0x1 #define RGR1_SW_INIT_1_INIT_7278_SHIFT 0x0 /* PCIe parameters */ #define BRCM_NUM_PCIE_OUT_WINS 0x4 #define BRCM_INT_PCI_MSI_NR 32 #define BRCM_INT_PCI_MSI_LEGACY_NR 8 #define BRCM_INT_PCI_MSI_SHIFT 0 #define BRCM_INT_PCI_MSI_MASK GENMASK(BRCM_INT_PCI_MSI_NR - 1, 0) #define BRCM_INT_PCI_MSI_LEGACY_MASK GENMASK(31, \ 32 - BRCM_INT_PCI_MSI_LEGACY_NR) /* MSI target addresses */ #define BRCM_MSI_TARGET_ADDR_LT_4GB 0x0fffffffcULL #define BRCM_MSI_TARGET_ADDR_GT_4GB 0xffffffffcULL /* MDIO registers */ #define MDIO_PORT0 0x0 #define MDIO_DATA_MASK 0x7fffffff #define MDIO_PORT_MASK 0xf0000 #define MDIO_PORT_EXT_MASK 0x200000 #define MDIO_REGAD_MASK 0xffff #define MDIO_CMD_MASK 0x00100000 #define MDIO_CMD_READ 0x1 #define MDIO_CMD_WRITE 0x0 #define MDIO_DATA_DONE_MASK 0x80000000 #define MDIO_RD_DONE(x) (((x) & MDIO_DATA_DONE_MASK) ? 1 : 0) #define MDIO_WT_DONE(x) (((x) & MDIO_DATA_DONE_MASK) ? 0 : 1) #define SSC_REGS_ADDR 0x1100 #define SET_ADDR_OFFSET 0x1f #define SSC_CNTL_OFFSET 0x2 #define SSC_CNTL_OVRD_EN_MASK 0x8000 #define SSC_CNTL_OVRD_VAL_MASK 0x4000 #define SSC_STATUS_OFFSET 0x1 #define SSC_STATUS_SSC_MASK 0x400 #define SSC_STATUS_PLL_LOCK_MASK 0x800 #define PCIE_BRCM_MAX_MEMC 3 #define IDX_ADDR(pcie) ((pcie)->cfg->offsets[EXT_CFG_INDEX]) #define DATA_ADDR(pcie) ((pcie)->cfg->offsets[EXT_CFG_DATA]) #define PCIE_RGR1_SW_INIT_1(pcie) ((pcie)->cfg->offsets[RGR1_SW_INIT_1]) #define HARD_DEBUG(pcie) ((pcie)->cfg->offsets[PCIE_HARD_DEBUG]) #define INTR2_CPU_BASE(pcie) ((pcie)->cfg->offsets[PCIE_INTR2_CPU_BASE]) /* Rescal registers */ #define PCIE_DVT_PMU_PCIE_PHY_CTRL 0xc700 #define PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_NFLDS 0x3 #define PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_DIG_RESET_MASK 0x4 #define PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_DIG_RESET_SHIFT 0x2 #define PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_RESET_MASK 0x2 #define PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_RESET_SHIFT 0x1 #define PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_PWRDN_MASK 0x1 #define PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_PWRDN_SHIFT 0x0 /* BCM7712/2712-specific registers */ #define PCIE_RC_TL_VDM_CTL0 0x0a20 #define PCIE_RC_TL_VDM_CTL0_VDM_ENABLED_MASK 0x10000 #define PCIE_RC_TL_VDM_CTL0_VDM_IGNORETAG_MASK 0x20000 #define PCIE_RC_TL_VDM_CTL0_VDM_IGNOREVNDRID_MASK 0x40000 #define PCIE_RC_TL_VDM_CTL1 0x0a0c #define PCIE_RC_TL_VDM_CTL1_VDM_VNDRID0_MASK 0x0000ffff #define PCIE_RC_TL_VDM_CTL1_VDM_VNDRID1_MASK 0xffff0000 #define PCIE_MISC_CTRL_1 0x40A0 #define PCIE_MISC_CTRL_1_OUTBOUND_TC_MASK 0xf #define PCIE_MISC_CTRL_1_OUTBOUND_NO_SNOOP_MASK BIT(3) #define PCIE_MISC_CTRL_1_OUTBOUND_RO_MASK BIT(4) #define PCIE_MISC_CTRL_1_EN_VDM_QOS_CONTROL_MASK BIT(5) #define PCIE_MISC_UBUS_CTRL 0x40a4 #define PCIE_MISC_UBUS_CTRL_UBUS_PCIE_REPLY_ERR_DIS_MASK BIT(13) #define PCIE_MISC_UBUS_CTRL_UBUS_PCIE_REPLY_DECERR_DIS_MASK BIT(19) #define PCIE_MISC_UBUS_TIMEOUT 0x40a8 #define PCIE_MISC_RC_CONFIG_RETRY_TIMEOUT 0x405c /* AXI priority forwarding - automatic level-based */ #define PCIE_MISC_TC_QUEUE_TO_QOS_MAP(x) (0x4160 - (x) * 4) /* Defined in quarter-fullness */ #define QUEUE_THRESHOLD_34_TO_QOS_MAP_SHIFT 12 #define QUEUE_THRESHOLD_23_TO_QOS_MAP_SHIFT 8 #define QUEUE_THRESHOLD_12_TO_QOS_MAP_SHIFT 4 #define QUEUE_THRESHOLD_01_TO_QOS_MAP_SHIFT 0 #define QUEUE_THRESHOLD_MASK 0xf /* VDM messages indexing TCs to AXI priorities */ /* Indexes 8-15 */ #define PCIE_MISC_VDM_PRIORITY_TO_QOS_MAP_HI 0x4164 /* Indexes 0-7 */ #define PCIE_MISC_VDM_PRIORITY_TO_QOS_MAP_LO 0x4168 #define VDM_PRIORITY_TO_QOS_MAP_SHIFT(x) (4 * (x)) #define VDM_PRIORITY_TO_QOS_MAP_MASK 0xf #define PCIE_MISC_AXI_INTF_CTRL 0x416C #define AXI_EN_RCLK_QOS_ARRAY_FIX BIT(13) #define AXI_EN_QOS_UPDATE_TIMING_FIX BIT(12) #define AXI_DIS_QOS_GATING_IN_MASTER BIT(11) #define AXI_REQFIFO_EN_QOS_PROPAGATION BIT(7) #define AXI_BRIDGE_LOW_LATENCY_MODE BIT(6) #define AXI_MASTER_MAX_OUTSTANDING_REQUESTS_MASK 0x3f #define PCIE_MISC_AXI_READ_ERROR_DATA 0x4170 /* Forward declarations */ struct brcm_pcie; enum { RGR1_SW_INIT_1, EXT_CFG_INDEX, EXT_CFG_DATA, PCIE_HARD_DEBUG, PCIE_INTR2_CPU_BASE, }; enum pcie_soc_base { GENERIC, BCM2711, BCM4908, BCM7278, BCM7425, BCM7435, BCM7712, }; struct inbound_win { u64 size; u64 pci_offset; u64 cpu_addr; }; #define TRACE_BUF_LEN 64 struct trace_entry { u8 st; ktime_t ts; }; static const char *brcm_pcie_decode_ltssm_state(u8 state) { switch (state) { case 0x01: return "L0"; case 0x02: return "L1"; case 0x03: return "L2"; case 0x04: return "RxL0s_TxL0s"; case 0x05: return "RxL0_TxL0s"; case 0x09: return "Polling.Active"; case 0x0A: return "Polling.Configuration"; case 0x0C: return "Polling.Compliance"; case 0x10: return "Configuration.Link"; case 0x11: return "Configuration.Linkwidth.Accept"; case 0x12: return "Configuration.Lanenum.Wait"; case 0x13: return "Confguration.Lanenum.Accept"; case 0x14: return "Confguration.Complete"; case 0x15: return "Configuration.Idle"; case 0x20: return "Recovery.RcvrLock"; case 0x21: return "Recovery.RcvrCfg"; case 0x22: return "Recovery.Idle"; case 0x23: return "Recovery.Speed"; case 0x24: return "Recovery.EQ_Phase0"; case 0x25: return "Recovery.EQ_Phase1"; case 0x26: return "Recovery.EQ_Phase2"; case 0x27: return "Recovery.EQ_Phase3"; case 0x40: return "Disable"; case 0x43: return "Reset"; case 0x47: return "Loopback.Entry"; case 0x48: return "Loopback.Active"; case 0x49: return "Loopback.Exit"; case 0x4C: return "Loopback.Master.Entry"; case 0x4D: return "Loopback.Master.Active"; case 0x4E: return "Loopback.Master.Exit"; case 0x70: return "Recovery.Speed_Change"; case 0x80: return "Detect.Quiet"; case 0x81: return "Detect.Active"; case 0x82: return "Detect.Wait"; case 0x83: return "Detect.Active2"; default: break; } return NULL; }; /* * The RESCAL block is tied to PCIe controller #1, regardless of the number of * controllers, and turning off PCIe controller #1 prevents access to the RESCAL * register blocks, therefore no other controller can access this register * space, and depending upon the bus fabric we may get a timeout (UBUS/GISB), * or a hang (AXI). */ #define CFG_QUIRK_AVOID_BRIDGE_SHUTDOWN BIT(0) /* * MDIO register map differences and required changes to the defaults mean that refclk * spread-spectrum clocking isn't supportable. */ #define CFG_QUIRK_NO_SSC BIT(1) struct pcie_cfg_data { const int *offsets; const enum pcie_soc_base soc_base; const bool has_phy; const u32 quirks; u8 num_inbound_wins; int (*perst_set)(struct brcm_pcie *pcie, u32 val); int (*bridge_sw_init_set)(struct brcm_pcie *pcie, u32 val); int (*post_setup)(struct brcm_pcie *pcie); }; struct subdev_regulators { unsigned int num_supplies; struct regulator_bulk_data supplies[]; }; struct brcm_msi { struct device *dev; void __iomem *base; struct device_node *np; struct irq_domain *inner_domain; struct mutex lock; /* guards the alloc/free operations */ u64 target_addr; int irq; DECLARE_BITMAP(used, BRCM_INT_PCI_MSI_NR); bool legacy; /* Some chips have MSIs in bits [31..24] of a shared register. */ int legacy_shift; int nr; /* No. of MSI available, depends on chip */ /* This is the base pointer for interrupt status/set/clr regs */ void __iomem *intr_base; }; /* Internal PCIe Host Controller Information.*/ struct brcm_pcie { struct device *dev; void __iomem *base; struct clk *clk; struct device_node *np; bool ssc; int gen; u64 msi_target_addr; struct brcm_msi *msi; struct reset_control *rescal; struct reset_control *perst_reset; struct reset_control *bridge_reset; struct reset_control *swinit_reset; int num_memc; u64 memc_size[PCIE_BRCM_MAX_MEMC]; u32 hw_rev; struct subdev_regulators *sr; bool ep_wakeup_capable; const struct pcie_cfg_data *cfg; u32 tperst_clk_ms; bool trace_ltssm; struct trace_entry *ltssm_trace_buf; /* Statistics exposed in debugfs */ struct dentry *debugfs_dir; u64 tx_tlp; u64 rx_tlp; u64 tx_dllp; u64 rx_dllp; u32 pl_rx_err; u32 dl_rx_err; u32 tl_rx_err; u16 l0s_exit_time; u16 recov_time; u16 l0s_fail_cnt; u16 recov_cnt; }; static inline bool is_bmips(const struct brcm_pcie *pcie) { return pcie->cfg->soc_base == BCM7435 || pcie->cfg->soc_base == BCM7425; } /* * This is to convert the size of the inbound "BAR" region to the * non-linear values of PCIE_X_MISC_RC_BAR[123]_CONFIG_LO.SIZE */ static int brcm_pcie_encode_ibar_size(u64 size) { int log2_in = ilog2(size); if (log2_in >= 12 && log2_in <= 15) /* Covers 4KB to 32KB (inclusive) */ return (log2_in - 12) + 0x1c; else if (log2_in >= 16 && log2_in <= 36) /* Covers 64KB to 64GB, (inclusive) */ return log2_in - 15; /* Something is awry so disable */ return 0; } static u32 brcm_pcie_mdio_form_pkt(int port, int regad, int cmd) { u32 pkt = 0; pkt |= FIELD_PREP(MDIO_PORT_EXT_MASK, port >> 4); pkt |= FIELD_PREP(MDIO_PORT_MASK, port); pkt |= FIELD_PREP(MDIO_REGAD_MASK, regad); pkt |= FIELD_PREP(MDIO_CMD_MASK, cmd); return pkt; } /* negative return value indicates error */ static int brcm_pcie_mdio_read(void __iomem *base, u8 port, u8 regad, u32 *val) { u32 data; int err; writel(brcm_pcie_mdio_form_pkt(port, regad, MDIO_CMD_READ), base + PCIE_RC_DL_MDIO_ADDR); readl(base + PCIE_RC_DL_MDIO_ADDR); err = readl_poll_timeout_atomic(base + PCIE_RC_DL_MDIO_RD_DATA, data, MDIO_RD_DONE(data), 10, 100); *val = FIELD_GET(MDIO_DATA_MASK, data); return err; } /* negative return value indicates error */ static int brcm_pcie_mdio_write(void __iomem *base, u8 port, u8 regad, u16 wrdata) { u32 data; int err; writel(brcm_pcie_mdio_form_pkt(port, regad, MDIO_CMD_WRITE), base + PCIE_RC_DL_MDIO_ADDR); readl(base + PCIE_RC_DL_MDIO_ADDR); writel(MDIO_DATA_DONE_MASK | wrdata, base + PCIE_RC_DL_MDIO_WR_DATA); err = readl_poll_timeout_atomic(base + PCIE_RC_DL_MDIO_WR_DATA, data, MDIO_WT_DONE(data), 10, 100); return err; } /* * Configures device for Spread Spectrum Clocking (SSC) mode; a negative * return value indicates error. */ static int brcm_pcie_set_ssc(struct brcm_pcie *pcie) { int pll, ssc; int ret; u32 tmp; ret = brcm_pcie_mdio_write(pcie->base, MDIO_PORT0, SET_ADDR_OFFSET, SSC_REGS_ADDR); if (ret < 0) return ret; ret = brcm_pcie_mdio_read(pcie->base, MDIO_PORT0, SSC_CNTL_OFFSET, &tmp); if (ret < 0) return ret; u32p_replace_bits(&tmp, 1, SSC_CNTL_OVRD_EN_MASK); u32p_replace_bits(&tmp, 1, SSC_CNTL_OVRD_VAL_MASK); ret = brcm_pcie_mdio_write(pcie->base, MDIO_PORT0, SSC_CNTL_OFFSET, tmp); if (ret < 0) return ret; usleep_range(1000, 2000); ret = brcm_pcie_mdio_read(pcie->base, MDIO_PORT0, SSC_STATUS_OFFSET, &tmp); if (ret < 0) return ret; ssc = FIELD_GET(SSC_STATUS_SSC_MASK, tmp); pll = FIELD_GET(SSC_STATUS_PLL_LOCK_MASK, tmp); return ssc && pll ? 0 : -EIO; } /* Limits operation to a specific generation (1, 2, or 3) */ static void brcm_pcie_set_gen(struct brcm_pcie *pcie, int gen) { u16 lnkctl2 = readw(pcie->base + BRCM_PCIE_CAP_REGS + PCI_EXP_LNKCTL2); u32 lnkcap = readl(pcie->base + PCIE_RC_CFG_PRIV1_LINK_CAPABILITY); u32p_replace_bits(&lnkcap, gen, PCI_EXP_LNKCAP_SLS); writel(lnkcap, pcie->base + PCIE_RC_CFG_PRIV1_LINK_CAPABILITY); u16p_replace_bits(&lnkctl2, gen, PCI_EXP_LNKCTL2_TLS); writew(lnkctl2, pcie->base + BRCM_PCIE_CAP_REGS + PCI_EXP_LNKCTL2); } static void brcm_pcie_set_outbound_win(struct brcm_pcie *pcie, u8 win, u64 cpu_addr, u64 pcie_addr, u64 size) { u32 cpu_addr_mb_high, limit_addr_mb_high; phys_addr_t cpu_addr_mb, limit_addr_mb; int high_addr_shift; u32 tmp; /* Set the base of the pcie_addr window */ writel(lower_32_bits(pcie_addr), pcie->base + PCIE_MEM_WIN0_LO(win)); writel(upper_32_bits(pcie_addr), pcie->base + PCIE_MEM_WIN0_HI(win)); /* Write the addr base & limit lower bits (in MBs) */ cpu_addr_mb = cpu_addr / SZ_1M; limit_addr_mb = (cpu_addr + size - 1) / SZ_1M; tmp = readl(pcie->base + PCIE_MEM_WIN0_BASE_LIMIT(win)); u32p_replace_bits(&tmp, cpu_addr_mb, PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT_BASE_MASK); u32p_replace_bits(&tmp, limit_addr_mb, PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT_LIMIT_MASK); writel(tmp, pcie->base + PCIE_MEM_WIN0_BASE_LIMIT(win)); if (is_bmips(pcie)) return; /* Write the cpu & limit addr upper bits */ high_addr_shift = HWEIGHT32(PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT_BASE_MASK); cpu_addr_mb_high = cpu_addr_mb >> high_addr_shift; tmp = readl(pcie->base + PCIE_MEM_WIN0_BASE_HI(win)); u32p_replace_bits(&tmp, cpu_addr_mb_high, PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_HI_BASE_MASK); writel(tmp, pcie->base + PCIE_MEM_WIN0_BASE_HI(win)); limit_addr_mb_high = limit_addr_mb >> high_addr_shift; tmp = readl(pcie->base + PCIE_MEM_WIN0_LIMIT_HI(win)); u32p_replace_bits(&tmp, limit_addr_mb_high, PCIE_MISC_CPU_2_PCIE_MEM_WIN0_LIMIT_HI_LIMIT_MASK); writel(tmp, pcie->base + PCIE_MEM_WIN0_LIMIT_HI(win)); } #define BRCM_MSI_FLAGS_REQUIRED (MSI_FLAG_USE_DEF_DOM_OPS | \ MSI_FLAG_USE_DEF_CHIP_OPS | \ MSI_FLAG_NO_AFFINITY) #define BRCM_MSI_FLAGS_SUPPORTED (MSI_GENERIC_FLAGS_MASK | \ MSI_FLAG_MULTI_PCI_MSI | \ MSI_FLAG_PCI_MSIX) static const struct msi_parent_ops brcm_msi_parent_ops = { .required_flags = BRCM_MSI_FLAGS_REQUIRED, .supported_flags = BRCM_MSI_FLAGS_SUPPORTED, .bus_select_token = DOMAIN_BUS_PCI_MSI, .chip_flags = MSI_CHIP_FLAG_SET_ACK, .prefix = "BRCM-", .init_dev_msi_info = msi_lib_init_dev_msi_info, }; static void brcm_pcie_msi_isr(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); unsigned long status; struct brcm_msi *msi; struct device *dev; u32 bit; chained_irq_enter(chip, desc); msi = irq_desc_get_handler_data(desc); dev = msi->dev; status = readl(msi->intr_base + MSI_INT_STATUS); status >>= msi->legacy_shift; for_each_set_bit(bit, &status, msi->nr) { int ret; ret = generic_handle_domain_irq(msi->inner_domain, bit); if (ret) dev_dbg(dev, "unexpected MSI\n"); } chained_irq_exit(chip, desc); } static void brcm_msi_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) { struct brcm_msi *msi = irq_data_get_irq_chip_data(data); msg->address_lo = lower_32_bits(msi->target_addr); msg->address_hi = upper_32_bits(msi->target_addr); msg->data = (0xffff & PCIE_MISC_MSI_DATA_CONFIG_VAL_32) | data->hwirq; } static void brcm_msi_ack_irq(struct irq_data *data) { struct brcm_msi *msi = irq_data_get_irq_chip_data(data); const int shift_amt = data->hwirq + msi->legacy_shift; writel(1 << shift_amt, msi->intr_base + MSI_INT_CLR); } static struct irq_chip brcm_msi_bottom_irq_chip = { .name = "BRCM STB MSI", .irq_compose_msi_msg = brcm_msi_compose_msi_msg, .irq_ack = brcm_msi_ack_irq, }; static int brcm_msi_alloc(struct brcm_msi *msi, unsigned int nr_irqs) { int hwirq; mutex_lock(&msi->lock); hwirq = bitmap_find_free_region(msi->used, msi->nr, order_base_2(nr_irqs)); mutex_unlock(&msi->lock); return hwirq; } static void brcm_msi_free(struct brcm_msi *msi, unsigned long hwirq, unsigned int nr_irqs) { mutex_lock(&msi->lock); bitmap_release_region(msi->used, hwirq, order_base_2(nr_irqs)); mutex_unlock(&msi->lock); } static int brcm_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *args) { struct brcm_msi *msi = domain->host_data; int hwirq, i; hwirq = brcm_msi_alloc(msi, nr_irqs); if (hwirq < 0) return hwirq; for (i = 0; i < nr_irqs; i++) irq_domain_set_info(domain, virq + i, (irq_hw_number_t)hwirq + i, &brcm_msi_bottom_irq_chip, domain->host_data, handle_edge_irq, NULL, NULL); return 0; } static void brcm_irq_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_data *d = irq_domain_get_irq_data(domain, virq); struct brcm_msi *msi = irq_data_get_irq_chip_data(d); brcm_msi_free(msi, d->hwirq, nr_irqs); } static const struct irq_domain_ops msi_domain_ops = { .alloc = brcm_irq_domain_alloc, .free = brcm_irq_domain_free, }; static int brcm_allocate_domains(struct brcm_msi *msi) { struct device *dev = msi->dev; struct irq_domain_info info = { .fwnode = of_fwnode_handle(msi->np), .ops = &msi_domain_ops, .host_data = msi, .size = msi->nr, }; msi->inner_domain = msi_create_parent_irq_domain(&info, &brcm_msi_parent_ops); if (!msi->inner_domain) { dev_err(dev, "failed to create MSI domain\n"); return -ENOMEM; } return 0; } static void brcm_free_domains(struct brcm_msi *msi) { irq_domain_remove(msi->inner_domain); } static void brcm_msi_remove(struct brcm_pcie *pcie) { struct brcm_msi *msi = pcie->msi; if (!msi) return; irq_set_chained_handler_and_data(msi->irq, NULL, NULL); brcm_free_domains(msi); } static void brcm_msi_set_regs(struct brcm_msi *msi) { u32 val = msi->legacy ? BRCM_INT_PCI_MSI_LEGACY_MASK : BRCM_INT_PCI_MSI_MASK; writel(val, msi->intr_base + MSI_INT_MASK_CLR); writel(val, msi->intr_base + MSI_INT_CLR); /* * The 0 bit of PCIE_MISC_MSI_BAR_CONFIG_LO is repurposed to MSI * enable, which we set to 1. */ writel(lower_32_bits(msi->target_addr) | 0x1, msi->base + PCIE_MISC_MSI_BAR_CONFIG_LO); writel(upper_32_bits(msi->target_addr), msi->base + PCIE_MISC_MSI_BAR_CONFIG_HI); val = msi->legacy ? PCIE_MISC_MSI_DATA_CONFIG_VAL_8 : PCIE_MISC_MSI_DATA_CONFIG_VAL_32; writel(val, msi->base + PCIE_MISC_MSI_DATA_CONFIG); } static int brcm_pcie_enable_msi(struct brcm_pcie *pcie) { struct brcm_msi *msi; int irq, ret; struct device *dev = pcie->dev; irq = irq_of_parse_and_map(dev->of_node, 1); if (irq <= 0) { dev_err(dev, "cannot map MSI interrupt\n"); return -ENODEV; } msi = devm_kzalloc(dev, sizeof(struct brcm_msi), GFP_KERNEL); if (!msi) return -ENOMEM; mutex_init(&msi->lock); msi->dev = dev; msi->base = pcie->base; msi->np = pcie->np; msi->target_addr = pcie->msi_target_addr; msi->irq = irq; msi->legacy = pcie->hw_rev < BRCM_PCIE_HW_REV_33; /* * Sanity check to make sure that the 'used' bitmap in struct brcm_msi * is large enough. */ BUILD_BUG_ON(BRCM_INT_PCI_MSI_LEGACY_NR > BRCM_INT_PCI_MSI_NR); if (msi->legacy) { msi->intr_base = msi->base + INTR2_CPU_BASE(pcie); msi->nr = BRCM_INT_PCI_MSI_LEGACY_NR; msi->legacy_shift = 24; } else { msi->intr_base = msi->base + PCIE_MSI_INTR2_BASE; msi->nr = BRCM_INT_PCI_MSI_NR; msi->legacy_shift = 0; } ret = brcm_allocate_domains(msi); if (ret) return ret; irq_set_chained_handler_and_data(msi->irq, brcm_pcie_msi_isr, msi); brcm_msi_set_regs(msi); pcie->msi = msi; return 0; } /* The controller is capable of serving in both RC and EP roles */ static bool brcm_pcie_rc_mode(struct brcm_pcie *pcie) { void __iomem *base = pcie->base; u32 val = readl(base + PCIE_MISC_PCIE_STATUS); return !!FIELD_GET(PCIE_MISC_PCIE_STATUS_PCIE_PORT_MASK, val); } static bool brcm_pcie_link_up(struct brcm_pcie *pcie) { u32 val = readl(pcie->base + PCIE_MISC_PCIE_STATUS); u32 dla = FIELD_GET(PCIE_MISC_PCIE_STATUS_PCIE_DL_ACTIVE_MASK, val); u32 plu = FIELD_GET(PCIE_MISC_PCIE_STATUS_PCIE_PHYLINKUP_MASK, val); return dla && plu; } static void __iomem *brcm_pcie_map_bus(struct pci_bus *bus, unsigned int devfn, int where) { struct brcm_pcie *pcie = bus->sysdata; void __iomem *base = pcie->base; int idx; /* Accesses to the RC go right to the RC registers if !devfn */ if (pci_is_root_bus(bus)) return devfn ? NULL : base + PCIE_ECAM_REG(where); /* An access to our HW w/o link-up will cause a CPU Abort */ if (!brcm_pcie_link_up(pcie)) return NULL; /* For devices, write to the config space index register */ idx = PCIE_ECAM_OFFSET(bus->number, devfn, 0); writel(idx, base + IDX_ADDR(pcie)); return base + DATA_ADDR(pcie) + PCIE_ECAM_REG(where); } static void __iomem *brcm7425_pcie_map_bus(struct pci_bus *bus, unsigned int devfn, int where) { struct brcm_pcie *pcie = bus->sysdata; void __iomem *base = pcie->base; int idx; /* Accesses to the RC go right to the RC registers if !devfn */ if (pci_is_root_bus(bus)) return devfn ? NULL : base + PCIE_ECAM_REG(where); /* An access to our HW w/o link-up will cause a CPU Abort */ if (!brcm_pcie_link_up(pcie)) return NULL; /* For devices, write to the config space index register */ idx = PCIE_ECAM_OFFSET(bus->number, devfn, where); writel(idx, base + IDX_ADDR(pcie)); return base + DATA_ADDR(pcie); } static int brcm_pcie_bridge_sw_init_set_generic(struct brcm_pcie *pcie, u32 val) { u32 tmp, mask = RGR1_SW_INIT_1_INIT_GENERIC_MASK; u32 shift = RGR1_SW_INIT_1_INIT_GENERIC_SHIFT; int ret = 0; if (pcie->bridge_reset) { if (val) ret = reset_control_assert(pcie->bridge_reset); else ret = reset_control_deassert(pcie->bridge_reset); if (ret) dev_err(pcie->dev, "failed to %s 'bridge' reset, err=%d\n", val ? "assert" : "deassert", ret); return ret; } tmp = readl(pcie->base + PCIE_RGR1_SW_INIT_1(pcie)); tmp = (tmp & ~mask) | ((val << shift) & mask); writel(tmp, pcie->base + PCIE_RGR1_SW_INIT_1(pcie)); return ret; } static int brcm_pcie_bridge_sw_init_set_7278(struct brcm_pcie *pcie, u32 val) { u32 tmp, mask = RGR1_SW_INIT_1_INIT_7278_MASK; u32 shift = RGR1_SW_INIT_1_INIT_7278_SHIFT; tmp = readl(pcie->base + PCIE_RGR1_SW_INIT_1(pcie)); tmp = (tmp & ~mask) | ((val << shift) & mask); writel(tmp, pcie->base + PCIE_RGR1_SW_INIT_1(pcie)); return 0; } static int brcm_pcie_perst_set_4908(struct brcm_pcie *pcie, u32 val) { int ret; if (WARN_ONCE(!pcie->perst_reset, "missing PERST# reset controller\n")) return -EINVAL; if (val) ret = reset_control_assert(pcie->perst_reset); else ret = reset_control_deassert(pcie->perst_reset); if (ret) dev_err(pcie->dev, "failed to %s 'perst' reset, err=%d\n", val ? "assert" : "deassert", ret); return ret; } static int brcm_pcie_perst_set_7278(struct brcm_pcie *pcie, u32 val) { u32 tmp; /* Perst bit has moved and assert value is 0 */ tmp = readl(pcie->base + PCIE_MISC_PCIE_CTRL); u32p_replace_bits(&tmp, !val, PCIE_MISC_PCIE_CTRL_PCIE_PERSTB_MASK); writel(tmp, pcie->base + PCIE_MISC_PCIE_CTRL); return 0; } static int brcm_pcie_perst_set_generic(struct brcm_pcie *pcie, u32 val) { u32 tmp; tmp = readl(pcie->base + PCIE_RGR1_SW_INIT_1(pcie)); u32p_replace_bits(&tmp, val, PCIE_RGR1_SW_INIT_1_PERST_MASK); writel(tmp, pcie->base + PCIE_RGR1_SW_INIT_1(pcie)); return 0; } static int brcm_pcie_post_setup_bcm2712(struct brcm_pcie *pcie) { static const u16 data[] = { 0x50b9, 0xbda1, 0x0094, 0x97b4, 0x5030, 0x5030, 0x0007 }; static const u8 regs[] = { 0x16, 0x17, 0x18, 0x19, 0x1b, 0x1c, 0x1e }; int ret, i; u32 tmp; u8 qos_map[8]; /* Allow a 54MHz (xosc) refclk source */ ret = brcm_pcie_mdio_write(pcie->base, MDIO_PORT0, SET_ADDR_OFFSET, 0x1600); if (ret < 0) return ret; for (i = 0; i < ARRAY_SIZE(regs); i++) { ret = brcm_pcie_mdio_write(pcie->base, MDIO_PORT0, regs[i], data[i]); if (ret < 0) return ret; } usleep_range(100, 200); /* * Set L1SS sub-state timers to avoid lengthy state transitions, * PM clock period is 18.52ns (1/54MHz, round down). */ tmp = readl(pcie->base + PCIE_RC_PL_PHY_CTL_15); tmp &= ~PCIE_RC_PL_PHY_CTL_15_PM_CLK_PERIOD_MASK; tmp |= 0x12; writel(tmp, pcie->base + PCIE_RC_PL_PHY_CTL_15); /* * BCM7712/2712 uses a UBUS-AXI bridge. * Suppress AXI error responses and return 1s for read failures. */ tmp = readl(pcie->base + PCIE_MISC_UBUS_CTRL); u32p_replace_bits(&tmp, 1, PCIE_MISC_UBUS_CTRL_UBUS_PCIE_REPLY_ERR_DIS_MASK); u32p_replace_bits(&tmp, 1, PCIE_MISC_UBUS_CTRL_UBUS_PCIE_REPLY_DECERR_DIS_MASK); writel(tmp, pcie->base + PCIE_MISC_UBUS_CTRL); writel(0xffffffff, pcie->base + PCIE_MISC_AXI_READ_ERROR_DATA); /* * Adjust timeouts. The UBUS timeout also affects Configuration Request * Retry responses, as the request will get terminated if * either timeout expires, so both have to be a large value * (in clocks of 750MHz). * Set UBUS timeout to 250ms, then set RC config retry timeout * to be ~240ms. * * If CRSSVE=1 this will stop the core from blocking on a Retry * response, but does require the device to be well-behaved... */ writel(0xB2D0000, pcie->base + PCIE_MISC_UBUS_TIMEOUT); writel(0xABA0000, pcie->base + PCIE_MISC_RC_CONFIG_RETRY_TIMEOUT); /* * BCM2712 has a configurable QoS mechanism that assigns TLP Traffic Classes * to separate AXI IDs with a configurable priority scheme. * Dynamic priority elevation is supported through reception of Type 1 * Vendor Defined Messages, but several bugs make this largely ineffective. */ /* Disable broken forwarding search. Set chicken bits for 2712D0 */ tmp = readl(pcie->base + PCIE_MISC_AXI_INTF_CTRL); tmp &= ~AXI_REQFIFO_EN_QOS_PROPAGATION; tmp |= AXI_EN_RCLK_QOS_ARRAY_FIX | AXI_EN_QOS_UPDATE_TIMING_FIX | AXI_DIS_QOS_GATING_IN_MASTER; writel(tmp, pcie->base + PCIE_MISC_AXI_INTF_CTRL); /* * Work around spurious QoS=0 assignments to inbound traffic. * If the QOS_UPDATE_TIMING_FIX bit is Reserved-0, then this is a * 2712C1 chip, or a single-lane RC. Use the best-effort alternative * which is to partially throttle AXI requests in-flight to SDRAM. */ tmp = readl(pcie->base + PCIE_MISC_AXI_INTF_CTRL); if (!(tmp & AXI_EN_QOS_UPDATE_TIMING_FIX)) { tmp &= ~AXI_MASTER_MAX_OUTSTANDING_REQUESTS_MASK; tmp |= 15; writel(tmp, pcie->base + PCIE_MISC_AXI_INTF_CTRL); } /* Disable VDM reception by default */ tmp = readl(pcie->base + PCIE_MISC_CTRL_1); tmp &= ~PCIE_MISC_CTRL_1_EN_VDM_QOS_CONTROL_MASK; writel(tmp, pcie->base + PCIE_MISC_CTRL_1); if (!of_property_read_u8_array(pcie->np, "brcm,fifo-qos-map", qos_map, 4)) { /* * Backpressure mode - each element is QoS for each * quartile of FIFO level. Each TC gets the same map, because * this mode is intended for nonrealtime EPs. */ tmp = 0; for (i = 0; i < 4; i++) { /* Priorities range from 0-15 */ qos_map[i] &= 0x0f; tmp |= qos_map[i] << (i * 4); } for (i = 0; i < 8; i++) writel(tmp, pcie->base + PCIE_MISC_TC_QUEUE_TO_QOS_MAP(i)); } else if (!of_property_read_u8_array(pcie->np, "brcm,vdm-qos-map", qos_map, 8)) { /* Enable VDM reception */ tmp = readl(pcie->base + PCIE_MISC_CTRL_1); tmp |= PCIE_MISC_CTRL_1_EN_VDM_QOS_CONTROL_MASK; writel(tmp, pcie->base + PCIE_MISC_CTRL_1); tmp = 0; for (i = 0; i < 8; i++) { /* Priorities range from 0-15 */ qos_map[i] &= 0x0f; tmp |= qos_map[i] << (i * 4); } /* Broken forwarding means no point separating panic priorities from normal */ writel(tmp, pcie->base + PCIE_MISC_VDM_PRIORITY_TO_QOS_MAP_LO); writel(tmp, pcie->base + PCIE_MISC_VDM_PRIORITY_TO_QOS_MAP_HI); /* Match Vendor ID of 0 */ writel(0, pcie->base + PCIE_RC_TL_VDM_CTL1); /* * Forward VDMs to priority interface anyway - * useful for debugging starvation through the received VDM count fields. */ tmp = readl(pcie->base + PCIE_RC_TL_VDM_CTL0); tmp |= PCIE_RC_TL_VDM_CTL0_VDM_ENABLED_MASK | PCIE_RC_TL_VDM_CTL0_VDM_IGNORETAG_MASK | PCIE_RC_TL_VDM_CTL0_VDM_IGNOREVNDRID_MASK; writel(tmp, pcie->base + PCIE_RC_TL_VDM_CTL0); } return 0; } static void add_inbound_win(struct inbound_win *b, u8 *count, u64 size, u64 cpu_addr, u64 pci_offset) { b->size = size; b->cpu_addr = cpu_addr; b->pci_offset = pci_offset; (*count)++; } static int brcm_pcie_get_inbound_wins(struct brcm_pcie *pcie, struct inbound_win inbound_wins[]) { struct pci_host_bridge *bridge = pci_host_bridge_from_priv(pcie); u64 pci_offset, cpu_addr, size = 0, tot_size = 0; struct resource_entry *entry; struct device *dev = pcie->dev; u64 lowest_pcie_addr = ~(u64)0; int ret, i = 0; u8 n = 0; /* * The HW registers (and PCIe) use order-1 numbering for BARs. As such, * we have inbound_wins[0] unused and BAR1 starts at inbound_wins[1]. */ struct inbound_win *b_begin = &inbound_wins[1]; struct inbound_win *b = b_begin; /* * STB chips beside 7712 disable the first inbound window default. * Rather being mapped to system memory it is mapped to the * internal registers of the SoC. This feature is deprecated, has * security considerations, and is not implemented in our modern * SoCs. */ if (pcie->cfg->soc_base != BCM7712) add_inbound_win(b++, &n, 0, 0, 0); resource_list_for_each_entry(entry, &bridge->dma_ranges) { u64 pcie_start = entry->res->start - entry->offset; u64 cpu_start = entry->res->start; size = resource_size(entry->res); tot_size += size; if (pcie_start < lowest_pcie_addr) lowest_pcie_addr = pcie_start; /* * 7712 and newer chips may have many BARs, with each * offering a non-overlapping viewport to system memory. * That being said, each BARs size must still be a power of * two. */ if (pcie->cfg->soc_base == BCM7712) add_inbound_win(b++, &n, size, cpu_start, pcie_start); if (n > pcie->cfg->num_inbound_wins) break; } if (lowest_pcie_addr == ~(u64)0) { dev_err(dev, "DT node has no dma-ranges\n"); return -EINVAL; } /* * 7712 and newer chips do not have an internal memory mapping system * that enables multiple memory controllers. As such, it can return * now w/o doing special configuration. */ if (pcie->cfg->soc_base == BCM7712) return n; ret = of_property_read_variable_u64_array(pcie->np, "brcm,scb-sizes", pcie->memc_size, 1, PCIE_BRCM_MAX_MEMC); if (ret <= 0) { /* Make an educated guess */ pcie->num_memc = 1; pcie->memc_size[0] = 1ULL << fls64(tot_size - 1); } else { pcie->num_memc = ret; } /* Each memc is viewed through a "port" that is a power of 2 */ for (i = 0, size = 0; i < pcie->num_memc; i++) size += pcie->memc_size[i]; /* Our HW mandates that the window size must be a power of 2 */ size = 1ULL << fls64(size - 1); /* * For STB chips, the BAR2 cpu_addr is hardwired to the start * of system memory, so we set it to 0. */ cpu_addr = 0; pci_offset = lowest_pcie_addr; /* * We validate the inbound memory view even though we should trust * whatever the device-tree provides. This is because of an HW issue on * early Raspberry Pi 4's revisions (bcm2711). It turns out its * firmware has to dynamically edit dma-ranges due to a bug on the * PCIe controller integration, which prohibits any access above the * lower 3GB of memory. Given this, we decided to keep the dma-ranges * in check, avoiding hard to debug device-tree related issues in the * future: * * The PCIe host controller by design must set the inbound viewport to * be a contiguous arrangement of all of the system's memory. In * addition, its size must be a power of two. To further complicate * matters, the viewport must start on a pcie-address that is aligned * on a multiple of its size. If a portion of the viewport does not * represent system memory -- e.g. 3GB of memory requires a 4GB * viewport -- we can map the outbound memory in or after 3GB and even * though the viewport will overlap the outbound memory the controller * will know to send outbound memory downstream and everything else * upstream. * * For example: * * - The best-case scenario, memory up to 3GB, is to place the inbound * region in the first 4GB of pcie-space, as some legacy devices can * only address 32bits. We would also like to put the MSI under 4GB * as well, since some devices require a 32bit MSI target address. * * - If the system memory is 4GB or larger we cannot start the inbound * region at location 0 (since we have to allow some space for * outbound memory @ 3GB). So instead it will start at the 1x * multiple of its size */ if (!size || (pci_offset & (size - 1)) || (pci_offset < SZ_4G && pci_offset > SZ_2G)) { dev_err(dev, "Invalid inbound_win2_offset/size: size 0x%llx, off 0x%llx\n", size, pci_offset); return -EINVAL; } /* Enable inbound window 2, the main inbound window for STB chips */ add_inbound_win(b++, &n, size, cpu_addr, pci_offset); /* * Disable inbound window 3. On some chips presents the same * window as #2 but the data appears in a settable endianness. */ add_inbound_win(b++, &n, 0, 0, 0); return n; } static u32 brcm_bar_reg_offset(int bar) { if (bar <= 3) return PCIE_MISC_RC_BAR1_CONFIG_LO + 8 * (bar - 1); else return PCIE_MISC_RC_BAR4_CONFIG_LO + 8 * (bar - 4); } static u32 brcm_ubus_reg_offset(int bar) { if (bar <= 3) return PCIE_MISC_UBUS_BAR1_CONFIG_REMAP + 8 * (bar - 1); else return PCIE_MISC_UBUS_BAR4_CONFIG_REMAP + 8 * (bar - 4); } static void set_inbound_win_registers(struct brcm_pcie *pcie, const struct inbound_win *inbound_wins, u8 num_inbound_wins) { void __iomem *base = pcie->base; int i; for (i = 1; i <= num_inbound_wins; i++) { u64 pci_offset = inbound_wins[i].pci_offset; u64 cpu_addr = inbound_wins[i].cpu_addr; u64 size = inbound_wins[i].size; u32 reg_offset = brcm_bar_reg_offset(i); u32 tmp = lower_32_bits(pci_offset); u32p_replace_bits(&tmp, brcm_pcie_encode_ibar_size(size), PCIE_MISC_RC_BAR1_CONFIG_LO_SIZE_MASK); /* Write low */ writel_relaxed(tmp, base + reg_offset); /* Write high */ writel_relaxed(upper_32_bits(pci_offset), base + reg_offset + 4); /* * Most STB chips: * Do nothing. * 7712: * All of their BARs need to be set. */ if (pcie->cfg->soc_base == BCM7712) { /* BUS remap register settings */ reg_offset = brcm_ubus_reg_offset(i); tmp = lower_32_bits(cpu_addr) & ~0xfff; tmp |= PCIE_MISC_UBUS_BAR1_CONFIG_REMAP_ACCESS_EN_MASK; writel_relaxed(tmp, base + reg_offset); tmp = upper_32_bits(cpu_addr); writel_relaxed(tmp, base + reg_offset + 4); } } } static int brcm_pcie_setup(struct brcm_pcie *pcie) { struct inbound_win inbound_wins[PCIE_BRCM_MAX_INBOUND_WINS]; void __iomem *base = pcie->base; struct pci_host_bridge *bridge; struct resource_entry *entry; u32 tmp, burst, aspm_support, num_lanes, num_lanes_cap; u8 num_out_wins = 0; int num_inbound_wins = 0; int memc, ret; /* Reset the bridge */ ret = pcie->cfg->bridge_sw_init_set(pcie, 1); if (ret) return ret; /* Ensure that PERST# is asserted; some bootloaders may deassert it. */ if (pcie->cfg->soc_base == BCM2711) { ret = pcie->cfg->perst_set(pcie, 1); if (ret) { pcie->cfg->bridge_sw_init_set(pcie, 0); return ret; } } usleep_range(100, 200); /* Take the bridge out of reset */ ret = pcie->cfg->bridge_sw_init_set(pcie, 0); if (ret) return ret; tmp = readl(base + HARD_DEBUG(pcie)); if (is_bmips(pcie)) tmp &= ~PCIE_BMIPS_MISC_HARD_PCIE_HARD_DEBUG_SERDES_IDDQ_MASK; else tmp &= ~PCIE_MISC_HARD_PCIE_HARD_DEBUG_SERDES_IDDQ_MASK; writel(tmp, base + HARD_DEBUG(pcie)); /* Wait for SerDes to be stable */ usleep_range(100, 200); /* * SCB_MAX_BURST_SIZE is a two bit field. For GENERIC chips it * is encoded as 0=128, 1=256, 2=512, 3=Rsvd, for BCM7278 it * is encoded as 0=Rsvd, 1=128, 2=256, 3=512. */ if (is_bmips(pcie)) burst = 0x1; /* 256 bytes */ else if (pcie->cfg->soc_base == BCM2711) burst = 0x0; /* 128 bytes */ else if (pcie->cfg->soc_base == BCM7278) burst = 0x3; /* 512 bytes */ else burst = 0x2; /* 512 bytes */ /* * Set SCB_MAX_BURST_SIZE, CFG_READ_UR_MODE, SCB_ACCESS_EN, * RCB_MPS_MODE, RCB_64B_MODE */ tmp = readl(base + PCIE_MISC_MISC_CTRL); u32p_replace_bits(&tmp, 1, PCIE_MISC_MISC_CTRL_SCB_ACCESS_EN_MASK); u32p_replace_bits(&tmp, 1, PCIE_MISC_MISC_CTRL_CFG_READ_UR_MODE_MASK); u32p_replace_bits(&tmp, burst, PCIE_MISC_MISC_CTRL_MAX_BURST_SIZE_MASK); u32p_replace_bits(&tmp, 1, PCIE_MISC_MISC_CTRL_PCIE_RCB_MPS_MODE_MASK); u32p_replace_bits(&tmp, 1, PCIE_MISC_MISC_CTRL_PCIE_RCB_64B_MODE_MASK); writel(tmp, base + PCIE_MISC_MISC_CTRL); num_inbound_wins = brcm_pcie_get_inbound_wins(pcie, inbound_wins); if (num_inbound_wins < 0) return num_inbound_wins; set_inbound_win_registers(pcie, inbound_wins, num_inbound_wins); if (!brcm_pcie_rc_mode(pcie)) { dev_err(pcie->dev, "PCIe RC controller misconfigured as Endpoint\n"); return -EINVAL; } tmp = readl(base + PCIE_MISC_MISC_CTRL); for (memc = 0; memc < pcie->num_memc; memc++) { u32 scb_size_val = ilog2(pcie->memc_size[memc]) - 15; if (memc == 0) u32p_replace_bits(&tmp, scb_size_val, SCB_SIZE_MASK(0)); else if (memc == 1) u32p_replace_bits(&tmp, scb_size_val, SCB_SIZE_MASK(1)); else if (memc == 2) u32p_replace_bits(&tmp, scb_size_val, SCB_SIZE_MASK(2)); } writel(tmp, base + PCIE_MISC_MISC_CTRL); /* * We ideally want the MSI target address to be located in the 32bit * addressable memory area. Some devices might depend on it. This is * possible either when the inbound window is located above the lower * 4GB or when the inbound area is smaller than 4GB (taking into * account the rounding-up we're forced to perform). */ if (inbound_wins[2].pci_offset >= SZ_4G || (inbound_wins[2].size + inbound_wins[2].pci_offset) < SZ_4G) pcie->msi_target_addr = BRCM_MSI_TARGET_ADDR_LT_4GB; else pcie->msi_target_addr = BRCM_MSI_TARGET_ADDR_GT_4GB; /* Don't advertise L0s capability if 'aspm-no-l0s' */ aspm_support = PCIE_LINK_STATE_L1; if (!of_property_read_bool(pcie->np, "aspm-no-l0s")) aspm_support |= PCIE_LINK_STATE_L0S; tmp = readl(base + PCIE_RC_CFG_PRIV1_LINK_CAPABILITY); u32p_replace_bits(&tmp, aspm_support, PCIE_RC_CFG_PRIV1_LINK_CAPABILITY_ASPM_SUPPORT_MASK); writel(tmp, base + PCIE_RC_CFG_PRIV1_LINK_CAPABILITY); /* 'tmp' still holds the contents of PRIV1_LINK_CAPABILITY */ num_lanes_cap = u32_get_bits(tmp, PCIE_RC_CFG_PRIV1_LINK_CAPABILITY_MAX_LINK_WIDTH_MASK); num_lanes = 0; /* * Use hardware negotiated Max Link Width value by default. If the * "num-lanes" DT property is present, assume that the chip's default * link width capability information is incorrect/undesired and use the * specified value instead. */ if (!of_property_read_u32(pcie->np, "num-lanes", &num_lanes) && num_lanes && num_lanes <= 4 && num_lanes_cap != num_lanes) { u32p_replace_bits(&tmp, num_lanes, PCIE_RC_CFG_PRIV1_LINK_CAPABILITY_MAX_LINK_WIDTH_MASK); writel(tmp, base + PCIE_RC_CFG_PRIV1_LINK_CAPABILITY); tmp = readl(base + PCIE_RC_PL_REG_PHY_CTL_1); u32p_replace_bits(&tmp, 1, PCIE_RC_PL_REG_PHY_CTL_1_REG_P2_POWERDOWN_ENA_NOSYNC_MASK); writel(tmp, base + PCIE_RC_PL_REG_PHY_CTL_1); } /* * For config space accesses on the RC, show the right class for * a PCIe-PCIe bridge (the default setting is to be EP mode). */ tmp = readl(base + PCIE_RC_CFG_PRIV1_ID_VAL3); u32p_replace_bits(&tmp, 0x060400, PCIE_RC_CFG_PRIV1_ID_VAL3_CLASS_CODE_MASK); writel(tmp, base + PCIE_RC_CFG_PRIV1_ID_VAL3); bridge = pci_host_bridge_from_priv(pcie); resource_list_for_each_entry(entry, &bridge->windows) { struct resource *res = entry->res; if (resource_type(res) != IORESOURCE_MEM) continue; if (num_out_wins >= BRCM_NUM_PCIE_OUT_WINS) { dev_err(pcie->dev, "too many outbound wins\n"); return -EINVAL; } if (is_bmips(pcie)) { u64 start = res->start; unsigned int j, nwins = resource_size(res) / SZ_128M; /* bmips PCIe outbound windows have a 128MB max size */ if (nwins > BRCM_NUM_PCIE_OUT_WINS) nwins = BRCM_NUM_PCIE_OUT_WINS; for (j = 0; j < nwins; j++, start += SZ_128M) brcm_pcie_set_outbound_win(pcie, j, start, start - entry->offset, SZ_128M); break; } brcm_pcie_set_outbound_win(pcie, num_out_wins, res->start, res->start - entry->offset, resource_size(res)); num_out_wins++; } /* PCIe->SCB endian mode for inbound window */ tmp = readl(base + PCIE_RC_CFG_VENDOR_VENDOR_SPECIFIC_REG1); u32p_replace_bits(&tmp, PCIE_RC_CFG_VENDOR_SPECIFIC_REG1_LITTLE_ENDIAN, PCIE_RC_CFG_VENDOR_VENDOR_SPECIFIC_REG1_ENDIAN_MODE_BAR2_MASK); writel(tmp, base + PCIE_RC_CFG_VENDOR_VENDOR_SPECIFIC_REG1); if (pcie->cfg->post_setup) { ret = pcie->cfg->post_setup(pcie); if (ret < 0) return ret; } return 0; } /* * This extends the timeout period for an access to an internal bus. This * access timeout may occur during L1SS sleep periods, even without the * presence of a PCIe access. */ static void brcm_extend_rbus_timeout(struct brcm_pcie *pcie) { /* TIMEOUT register is two registers before RGR1_SW_INIT_1 */ const unsigned int REG_OFFSET = PCIE_RGR1_SW_INIT_1(pcie) - 8; u32 timeout_us = 4000000; /* 4 seconds, our setting for L1SS */ /* 7712 does not have this (RGR1) timer */ if (pcie->cfg->soc_base == BCM7712) return; /* Each unit in timeout register is 1/216,000,000 seconds */ writel(216 * timeout_us, pcie->base + REG_OFFSET); } static void brcm_config_clkreq(struct brcm_pcie *pcie) { static const char err_msg[] = "invalid 'brcm,clkreq-mode' DT string\n"; const char *mode = "default"; u32 clkreq_cntl; int ret, tmp; ret = of_property_read_string(pcie->np, "brcm,clkreq-mode", &mode); if (ret && ret != -EINVAL) { dev_err(pcie->dev, err_msg); mode = "safe"; } /* Start out assuming safe mode (both mode bits cleared) */ clkreq_cntl = readl(pcie->base + HARD_DEBUG(pcie)); clkreq_cntl &= ~PCIE_CLKREQ_MASK; if (strcmp(mode, "no-l1ss") == 0) { /* * "no-l1ss" -- Provides Clock Power Management, L0s, and * L1, but cannot provide L1 substate (L1SS) power * savings. If the downstream device connected to the RC is * L1SS capable AND the OS enables L1SS, all PCIe traffic * may abruptly halt, potentially hanging the system. */ clkreq_cntl |= PCIE_MISC_HARD_PCIE_HARD_DEBUG_CLKREQ_DEBUG_ENABLE_MASK; /* * We want to un-advertise L1 substates because if the OS * tries to configure the controller into using L1 substate * power savings it may fail or hang when the RC HW is in * "no-l1ss" mode. */ tmp = readl(pcie->base + PCIE_RC_CFG_PRIV1_ROOT_CAP); u32p_replace_bits(&tmp, 2, PCIE_RC_CFG_PRIV1_ROOT_CAP_L1SS_MODE_MASK); writel(tmp, pcie->base + PCIE_RC_CFG_PRIV1_ROOT_CAP); } else if (strcmp(mode, "default") == 0) { /* * "default" -- Provides L0s, L1, and L1SS, but not * compliant to provide Clock Power Management; * specifically, may not be able to meet the Tclron max * timing of 400ns as specified in "Dynamic Clock Control", * section 3.2.5.2.2 of the PCIe spec. This situation is * atypical and should happen only with older devices. */ clkreq_cntl |= PCIE_MISC_HARD_PCIE_HARD_DEBUG_L1SS_ENABLE_MASK; brcm_extend_rbus_timeout(pcie); } else { /* * "safe" -- No power savings; refclk and CLKREQ# are driven by RC * unconditionally. */ if (strcmp(mode, "safe") != 0) dev_err(pcie->dev, err_msg); mode = "safe"; clkreq_cntl |= PCIE_MISC_HARD_PCIE_HARD_DEBUG_REFCLK_OVRD_OUT_MASK; clkreq_cntl |= PCIE_MISC_HARD_PCIE_HARD_DEBUG_REFCLK_OVRD_ENABLE_MASK; /* * Un-advertise L1ss as configuring an EP to enter L1.x with CLKREQ# * physically unconnected will result in a dead link. */ tmp = readl(pcie->base + PCIE_RC_CFG_PRIV1_ROOT_CAP); u32p_replace_bits(&tmp, 2, PCIE_RC_CFG_PRIV1_ROOT_CAP_L1SS_MODE_MASK); writel(tmp, pcie->base + PCIE_RC_CFG_PRIV1_ROOT_CAP); } writel(clkreq_cntl, pcie->base + HARD_DEBUG(pcie)); dev_info(pcie->dev, "clkreq-mode set to %s\n", mode); } static void brcm_pcie_stats_trigger(struct brcm_pcie *pcie, u32 micros) { u32 tmp; /* * A 0->1 transition on CTRL_EN is required to clear counters and start capture. * A microseconds count of 0 starts continuous gathering. */ tmp = readl(pcie->base + PCIE_RC_PL_STATS_CTRL); u32p_replace_bits(&tmp, 0, PCIE_RC_PL_STATS_CTRL_EN_MASK); writel(tmp, pcie->base + PCIE_RC_PL_STATS_CTRL); if (micros >= (1 << 28)) micros = (1 << 28) - 1U; u32p_replace_bits(&tmp, micros, PCIE_RC_PL_STATS_CTRL_LEN_MASK); u32p_replace_bits(&tmp, 1, PCIE_RC_PL_STATS_CTRL_EN_MASK); writel(tmp, pcie->base + PCIE_RC_PL_STATS_CTRL); } static void brcm_pcie_stats_capture(struct brcm_pcie *pcie) { u32 tmp; /* Snapshot the counters - capture engine may still be running */ pcie->tx_tlp = (u64)readl(pcie->base + PCIE_RC_PL_STATS_TXTLP_LO) + ((u64)readl(pcie->base + PCIE_RC_PL_STATS_TXTLP_HI) << 32ULL); pcie->rx_tlp = (u64)readl(pcie->base + PCIE_RC_PL_STATS_RXTLP_LO) + ((u64)readl(pcie->base + PCIE_RC_PL_STATS_RXTLP_HI) << 32ULL); pcie->tx_dllp = (u64)readl(pcie->base + PCIE_RC_PL_STATS_TXDLLP_LO) + ((u64)readl(pcie->base + PCIE_RC_PL_STATS_TXDLLP_HI) << 32ULL); pcie->rx_dllp = (u64)readl(pcie->base + PCIE_RC_PL_STATS_RXDLLP_LO) + ((u64)readl(pcie->base + PCIE_RC_PL_STATS_RXDLLP_HI) << 32ULL); pcie->pl_rx_err = readl(pcie->base + PCIE_RC_PL_STATS_RXPL_ERR); pcie->dl_rx_err = readl(pcie->base + PCIE_RC_PL_STATS_RXDL_ERR); pcie->tl_rx_err = readl(pcie->base + PCIE_RC_PL_STATS_RXTL_ERR); tmp = readl(pcie->base + PCIE_RC_PL_LTSSM_STATS_3); pcie->l0s_exit_time = FIELD_GET(PCIE_RC_PL_LTSSM_STATS_3_TIME_L0S_MASK, tmp); pcie->recov_time = FIELD_GET(PCIE_RC_PL_LTSSM_STATS_3_TIME_RECOV_MASK, tmp); tmp = readl(pcie->base + PCIE_RC_PL_LTSSM_STATS_CNT); pcie->l0s_fail_cnt = FIELD_GET(PCIE_RC_PL_LTSSM_STATS_CNT_L0S_FAIL_MASK, tmp); pcie->recov_cnt = FIELD_GET(PCIE_RC_PL_LTSSM_STATS_CNT_RECOV_MASK, tmp); } /* * Dump the link state machine transitions for the first 100ms after fundamental reset release. * Most link training completes in a far shorter time. * * The CPU-intensive nature of the capture means that this should only be used to * diagnose fatal link startup failures. */ static void brcm_pcie_trace_link_start(struct brcm_pcie *pcie) { struct device *dev = pcie->dev; struct trace_entry *trace = pcie->ltssm_trace_buf; int i = 0, j = 0; u8 cur_state; u32 ltssm_hist0, ltssm_hist1 = 0; ktime_t start, timeout; start = ktime_get(); timeout = ktime_add(start, ktime_set(0, NSEC_PER_MSEC * 100)); /* * The LTSSM history registers are implemented as an "open FIFO" where register data * shuffles along with each push - or moves under one's feet, if you prefer. * We can't atomically read more than one 32bit value (covering 4 entries), so poll * quickly while guessing the position of the first value we haven't seen yet. */ do { /* * This delay appears to work around a HW bug where data can temporarily * appear nibble-shifted. */ ndelay(10); /* Snapshot the FIFO state. Lowest different "byte" is latest data. */ ltssm_hist0 = readl(pcie->base + PCIE_RC_PL_LTSSM_HIST(3)); if (ltssm_hist0 == ltssm_hist1) continue; ltssm_hist1 = ltssm_hist0; /* * If the "fifo" has changed, we don't know by how much. * Scan through byte-wise and look for states */ for (j = 24; j >= 0; j -= 8) { cur_state = (ltssm_hist0 >> j) & 0xff; /* Unassigned entry */ if (cur_state == 0xff) continue; if (i > 0 && trace[i-1].st == cur_state) { /* * This is probably what we last saw. * Next byte should be a new entry. */ j -= 8; break; } else if (i == 0 && brcm_pcie_decode_ltssm_state(cur_state)) { /* Probably a new valid entry */ break; } } for (; j >= 0 && i < TRACE_BUF_LEN; j -= 8) { cur_state = (ltssm_hist0 >> j) & 0xff; trace[i].st = cur_state; trace[i].ts = ktime_sub(ktime_get(), start); i++; } if (i == TRACE_BUF_LEN) break; } while (!ktime_after(ktime_get(), timeout)); dev_info(dev, "LTSSM trace captured %d events (max %u):\n", i, TRACE_BUF_LEN); for (i = 0; i < TRACE_BUF_LEN; i++) { if (!trace[i].st) break; dev_info(dev, "%llu : %02x - %s\n", ktime_to_us(trace[i].ts), trace[i].st, brcm_pcie_decode_ltssm_state(trace[i].st)); } } static int brcm_pcie_start_link(struct brcm_pcie *pcie) { struct device *dev = pcie->dev; void __iomem *base = pcie->base; u16 nlw, cls, lnksta, tmp16; bool ssc_good = false; int ret, i; u32 tmp; /* Limit the generation if specified */ if (pcie->gen) brcm_pcie_set_gen(pcie, pcie->gen); brcm_pcie_stats_trigger(pcie, 0); /* Unassert the fundamental reset */ if (pcie->tperst_clk_ms) { /* * Increase Tperst_clk time by forcing PERST# output low while * the internal reset is released, so the PLL generates stable * refclk output further in advance of PERST# deassertion. */ tmp = readl(pcie->base + HARD_DEBUG(pcie)); u32p_replace_bits(&tmp, 1, PCIE_MISC_HARD_PCIE_HARD_DEBUG_PERST_ASSERT_MASK); writel(tmp, pcie->base + HARD_DEBUG(pcie)); ret = pcie->cfg->perst_set(pcie, 0); fsleep(pcie->tperst_clk_ms * USEC_PER_MSEC); tmp = readl(pcie->base + HARD_DEBUG(pcie)); u32p_replace_bits(&tmp, 0, PCIE_MISC_HARD_PCIE_HARD_DEBUG_PERST_ASSERT_MASK); writel(tmp, pcie->base + HARD_DEBUG(pcie)); } else { ret = pcie->cfg->perst_set(pcie, 0); } if (ret) return ret; if (pcie->trace_ltssm) brcm_pcie_trace_link_start(pcie); /* * Wait for 100ms after PERST# deassertion; see PCIe CEM specification * sections 2.2, PCIe r5.0, 6.6.1. */ msleep(PCIE_RESET_CONFIG_WAIT_MS); /* * Give the RC/EP even more time to wake up, before trying to * configure RC. Intermittently check status for link-up, up to a * total of 100ms. */ for (i = 0; i < 100 && !brcm_pcie_link_up(pcie); i += 5) msleep(5); if (!brcm_pcie_link_up(pcie)) { dev_err(dev, "link down\n"); return -ENODEV; } brcm_config_clkreq(pcie); if (pcie->ssc) { ret = brcm_pcie_set_ssc(pcie); if (ret == 0) ssc_good = true; else dev_err(dev, "failed attempt to enter ssc mode\n"); } lnksta = readw(base + BRCM_PCIE_CAP_REGS + PCI_EXP_LNKSTA); cls = FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta); nlw = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); dev_info(dev, "link up, %s x%u %s\n", pci_speed_string(pcie_link_speed[cls]), nlw, ssc_good ? "(SSC)" : "(!SSC)"); /* Snapshot the boot-time stats */ brcm_pcie_stats_capture(pcie); /* * RootCtl bits are reset by perst_n, which undoes pci_enable_crs() * called prior to pci_add_new_bus() during probe. Re-enable here. */ tmp16 = readw(base + BRCM_PCIE_CAP_REGS + PCI_EXP_RTCAP); if (tmp16 & PCI_EXP_RTCAP_CRSVIS) { tmp16 = readw(base + BRCM_PCIE_CAP_REGS + PCI_EXP_RTCTL); u16p_replace_bits(&tmp16, 1, PCI_EXP_RTCTL_CRSSVE); writew(tmp16, base + BRCM_PCIE_CAP_REGS + PCI_EXP_RTCTL); } return 0; } static const char * const supplies[] = { "vpcie3v3", "vpcie3v3aux", "vpcie12v", }; static void *alloc_subdev_regulators(struct device *dev) { const size_t size = sizeof(struct subdev_regulators) + sizeof(struct regulator_bulk_data) * ARRAY_SIZE(supplies); struct subdev_regulators *sr; int i; sr = devm_kzalloc(dev, size, GFP_KERNEL); if (sr) { sr->num_supplies = ARRAY_SIZE(supplies); for (i = 0; i < ARRAY_SIZE(supplies); i++) sr->supplies[i].supply = supplies[i]; } return sr; } static int brcm_pcie_add_bus(struct pci_bus *bus) { struct brcm_pcie *pcie = bus->sysdata; struct device *dev = &bus->dev; struct subdev_regulators *sr; int ret; if (!bus->parent || !pci_is_root_bus(bus->parent)) return 0; if (dev->of_node) { sr = alloc_subdev_regulators(dev); if (!sr) { dev_info(dev, "Can't allocate regulators for downstream device\n"); goto no_regulators; } pcie->sr = sr; ret = regulator_bulk_get(dev, sr->num_supplies, sr->supplies); if (ret) { dev_info(dev, "Did not get regulators, err=%d\n", ret); pcie->sr = NULL; goto no_regulators; } ret = regulator_bulk_enable(sr->num_supplies, sr->supplies); if (ret) { dev_err(dev, "Can't enable regulators for downstream device\n"); regulator_bulk_free(sr->num_supplies, sr->supplies); pcie->sr = NULL; } } no_regulators: brcm_pcie_start_link(pcie); return 0; } static void brcm_pcie_remove_bus(struct pci_bus *bus) { struct brcm_pcie *pcie = bus->sysdata; struct subdev_regulators *sr = pcie->sr; struct device *dev = &bus->dev; if (!sr || !bus->parent || !pci_is_root_bus(bus->parent)) return; if (regulator_bulk_disable(sr->num_supplies, sr->supplies)) dev_err(dev, "Failed to disable regulators for downstream device\n"); regulator_bulk_free(sr->num_supplies, sr->supplies); pcie->sr = NULL; } /* L23 is a low-power PCIe link state */ static void brcm_pcie_enter_l23(struct brcm_pcie *pcie) { void __iomem *base = pcie->base; int l23, i; u32 tmp; /* Assert request for L23 */ tmp = readl(base + PCIE_MISC_PCIE_CTRL); u32p_replace_bits(&tmp, 1, PCIE_MISC_PCIE_CTRL_PCIE_L23_REQUEST_MASK); writel(tmp, base + PCIE_MISC_PCIE_CTRL); /* Wait up to 36 msec for L23 */ tmp = readl(base + PCIE_MISC_PCIE_STATUS); l23 = FIELD_GET(PCIE_MISC_PCIE_STATUS_PCIE_LINK_IN_L23_MASK, tmp); for (i = 0; i < 15 && !l23; i++) { usleep_range(2000, 2400); tmp = readl(base + PCIE_MISC_PCIE_STATUS); l23 = FIELD_GET(PCIE_MISC_PCIE_STATUS_PCIE_LINK_IN_L23_MASK, tmp); } if (!l23) dev_err(pcie->dev, "failed to enter low-power link state\n"); } static int brcm_phy_cntl(struct brcm_pcie *pcie, const int start) { static const u32 shifts[PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_NFLDS] = { PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_PWRDN_SHIFT, PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_RESET_SHIFT, PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_DIG_RESET_SHIFT,}; static const u32 masks[PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_NFLDS] = { PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_PWRDN_MASK, PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_RESET_MASK, PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_DIG_RESET_MASK,}; const int beg = start ? 0 : PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_NFLDS - 1; const int end = start ? PCIE_DVT_PMU_PCIE_PHY_CTRL_DAST_NFLDS : -1; u32 tmp, combined_mask = 0; u32 val; void __iomem *base = pcie->base; int i, ret; for (i = beg; i != end; start ? i++ : i--) { val = start ? BIT_MASK(shifts[i]) : 0; tmp = readl(base + PCIE_DVT_PMU_PCIE_PHY_CTRL); tmp = (tmp & ~masks[i]) | (val & masks[i]); writel(tmp, base + PCIE_DVT_PMU_PCIE_PHY_CTRL); usleep_range(50, 200); combined_mask |= masks[i]; } tmp = readl(base + PCIE_DVT_PMU_PCIE_PHY_CTRL); val = start ? combined_mask : 0; ret = (tmp & combined_mask) == val ? 0 : -EIO; if (ret) dev_err(pcie->dev, "failed to %s phy\n", (start ? "start" : "stop")); return ret; } static inline int brcm_phy_start(struct brcm_pcie *pcie) { return pcie->cfg->has_phy ? brcm_phy_cntl(pcie, 1) : 0; } static inline int brcm_phy_stop(struct brcm_pcie *pcie) { return pcie->cfg->has_phy ? brcm_phy_cntl(pcie, 0) : 0; } static int brcm_pcie_turn_off(struct brcm_pcie *pcie) { void __iomem *base = pcie->base; int tmp, ret; if (brcm_pcie_link_up(pcie)) brcm_pcie_enter_l23(pcie); /* Assert fundamental reset */ ret = pcie->cfg->perst_set(pcie, 1); if (ret) return ret; /* Deassert request for L23 in case it was asserted */ tmp = readl(base + PCIE_MISC_PCIE_CTRL); u32p_replace_bits(&tmp, 0, PCIE_MISC_PCIE_CTRL_PCIE_L23_REQUEST_MASK); writel(tmp, base + PCIE_MISC_PCIE_CTRL); /* Turn off SerDes */ tmp = readl(base + HARD_DEBUG(pcie)); u32p_replace_bits(&tmp, 1, PCIE_MISC_HARD_PCIE_HARD_DEBUG_SERDES_IDDQ_MASK); writel(tmp, base + HARD_DEBUG(pcie)); if (!(pcie->cfg->quirks & CFG_QUIRK_AVOID_BRIDGE_SHUTDOWN)) /* Shutdown PCIe bridge */ ret = pcie->cfg->bridge_sw_init_set(pcie, 1); return ret; } static int pci_dev_may_wakeup(struct pci_dev *dev, void *data) { bool *ret = data; if (device_may_wakeup(&dev->dev)) { *ret = true; dev_info(&dev->dev, "Possible wake-up device; regulators will not be disabled\n"); } return (int) *ret; } static int brcm_pcie_suspend_noirq(struct device *dev) { struct brcm_pcie *pcie = dev_get_drvdata(dev); struct pci_host_bridge *bridge = pci_host_bridge_from_priv(pcie); int ret, rret; ret = brcm_pcie_turn_off(pcie); if (ret) return ret; /* * If brcm_phy_stop() returns an error, just dev_err(). If we * return the error it will cause the suspend to fail and this is a * forgivable offense that will probably be erased on resume. */ if (brcm_phy_stop(pcie)) dev_err(dev, "Could not stop phy for suspend\n"); ret = reset_control_rearm(pcie->rescal); if (ret) { dev_err(dev, "Could not rearm rescal reset\n"); return ret; } if (pcie->sr) { /* * Now turn off the regulators, but if at least one * downstream device is enabled as a wake-up source, do not * turn off regulators. */ pcie->ep_wakeup_capable = false; pci_walk_bus(bridge->bus, pci_dev_may_wakeup, &pcie->ep_wakeup_capable); if (!pcie->ep_wakeup_capable) { ret = regulator_bulk_disable(pcie->sr->num_supplies, pcie->sr->supplies); if (ret) { dev_err(dev, "Could not turn off regulators\n"); rret = reset_control_reset(pcie->rescal); if (rret) dev_err(dev, "failed to reset 'rascal' controller ret=%d\n", rret); return ret; } } } clk_disable_unprepare(pcie->clk); return 0; } static int brcm_pcie_resume_noirq(struct device *dev) { struct brcm_pcie *pcie = dev_get_drvdata(dev); void __iomem *base; u32 tmp; int ret, rret; base = pcie->base; ret = clk_prepare_enable(pcie->clk); if (ret) return ret; ret = reset_control_reset(pcie->rescal); if (ret) goto err_disable_clk; ret = brcm_phy_start(pcie); if (ret) goto err_reset; /* Take bridge out of reset so we can access the SERDES reg */ pcie->cfg->bridge_sw_init_set(pcie, 0); /* SERDES_IDDQ = 0 */ tmp = readl(base + HARD_DEBUG(pcie)); u32p_replace_bits(&tmp, 0, PCIE_MISC_HARD_PCIE_HARD_DEBUG_SERDES_IDDQ_MASK); writel(tmp, base + HARD_DEBUG(pcie)); /* wait for serdes to be stable */ udelay(100); ret = brcm_pcie_setup(pcie); if (ret) goto err_reset; if (pcie->sr) { if (pcie->ep_wakeup_capable) { /* * We are resuming from a suspend. In the suspend we * did not disable the power supplies, so there is * no need to enable them (and falsely increase their * usage count). */ pcie->ep_wakeup_capable = false; } else { ret = regulator_bulk_enable(pcie->sr->num_supplies, pcie->sr->supplies); if (ret) { dev_err(dev, "Could not turn on regulators\n"); goto err_reset; } } } ret = brcm_pcie_start_link(pcie); if (ret) goto err_regulator; if (pcie->msi) brcm_msi_set_regs(pcie->msi); return 0; err_regulator: if (pcie->sr) regulator_bulk_disable(pcie->sr->num_supplies, pcie->sr->supplies); err_reset: rret = reset_control_rearm(pcie->rescal); if (rret) dev_err(pcie->dev, "failed to rearm 'rescal' reset, err=%d\n", rret); err_disable_clk: clk_disable_unprepare(pcie->clk); return ret; } static void __brcm_pcie_remove(struct brcm_pcie *pcie) { debugfs_remove_recursive(pcie->debugfs_dir); brcm_msi_remove(pcie); brcm_pcie_turn_off(pcie); if (brcm_phy_stop(pcie)) dev_err(pcie->dev, "Could not stop phy\n"); if (reset_control_rearm(pcie->rescal)) dev_err(pcie->dev, "Could not rearm rescal reset\n"); clk_disable_unprepare(pcie->clk); } static void brcm_pcie_remove(struct platform_device *pdev) { struct brcm_pcie *pcie = platform_get_drvdata(pdev); struct pci_host_bridge *bridge = pci_host_bridge_from_priv(pcie); pci_stop_root_bus(bridge->bus); pci_remove_root_bus(bridge->bus); __brcm_pcie_remove(pcie); } static const int pcie_offsets[] = { [RGR1_SW_INIT_1] = 0x9210, [EXT_CFG_INDEX] = 0x9000, [EXT_CFG_DATA] = 0x8000, [PCIE_HARD_DEBUG] = 0x4204, [PCIE_INTR2_CPU_BASE] = 0x4300, }; static const int pcie_offsets_bcm7278[] = { [RGR1_SW_INIT_1] = 0xc010, [EXT_CFG_INDEX] = 0x9000, [EXT_CFG_DATA] = 0x8000, [PCIE_HARD_DEBUG] = 0x4204, [PCIE_INTR2_CPU_BASE] = 0x4300, }; static const int pcie_offsets_bcm7425[] = { [RGR1_SW_INIT_1] = 0x8010, [EXT_CFG_INDEX] = 0x8300, [EXT_CFG_DATA] = 0x8304, [PCIE_HARD_DEBUG] = 0x4204, [PCIE_INTR2_CPU_BASE] = 0x4300, }; static const int pcie_offsets_bcm7712[] = { [RGR1_SW_INIT_1] = 0x9210, [EXT_CFG_INDEX] = 0x9000, [EXT_CFG_DATA] = 0x8000, [PCIE_HARD_DEBUG] = 0x4304, [PCIE_INTR2_CPU_BASE] = 0x4400, }; static const struct pcie_cfg_data generic_cfg = { .offsets = pcie_offsets, .soc_base = GENERIC, .perst_set = brcm_pcie_perst_set_generic, .bridge_sw_init_set = brcm_pcie_bridge_sw_init_set_generic, .num_inbound_wins = 3, }; static const struct pcie_cfg_data bcm2711_cfg = { .offsets = pcie_offsets, .soc_base = BCM2711, .perst_set = brcm_pcie_perst_set_generic, .bridge_sw_init_set = brcm_pcie_bridge_sw_init_set_generic, .num_inbound_wins = 3, }; static const struct pcie_cfg_data bcm2712_cfg = { .offsets = pcie_offsets_bcm7712, .soc_base = BCM7712, .perst_set = brcm_pcie_perst_set_7278, .bridge_sw_init_set = brcm_pcie_bridge_sw_init_set_generic, .post_setup = brcm_pcie_post_setup_bcm2712, .quirks = CFG_QUIRK_AVOID_BRIDGE_SHUTDOWN | CFG_QUIRK_NO_SSC, .num_inbound_wins = 10, }; static const struct pcie_cfg_data bcm4908_cfg = { .offsets = pcie_offsets, .soc_base = BCM4908, .perst_set = brcm_pcie_perst_set_4908, .bridge_sw_init_set = brcm_pcie_bridge_sw_init_set_generic, .num_inbound_wins = 3, }; static const struct pcie_cfg_data bcm7278_cfg = { .offsets = pcie_offsets_bcm7278, .soc_base = BCM7278, .perst_set = brcm_pcie_perst_set_7278, .bridge_sw_init_set = brcm_pcie_bridge_sw_init_set_7278, .num_inbound_wins = 3, }; static const struct pcie_cfg_data bcm7425_cfg = { .offsets = pcie_offsets_bcm7425, .soc_base = BCM7425, .perst_set = brcm_pcie_perst_set_generic, .bridge_sw_init_set = brcm_pcie_bridge_sw_init_set_generic, .num_inbound_wins = 3, }; static const struct pcie_cfg_data bcm7435_cfg = { .offsets = pcie_offsets, .soc_base = BCM7435, .perst_set = brcm_pcie_perst_set_generic, .bridge_sw_init_set = brcm_pcie_bridge_sw_init_set_generic, .num_inbound_wins = 3, }; static const struct pcie_cfg_data bcm7216_cfg = { .offsets = pcie_offsets_bcm7278, .soc_base = BCM7278, .perst_set = brcm_pcie_perst_set_7278, .bridge_sw_init_set = brcm_pcie_bridge_sw_init_set_7278, .has_phy = true, .num_inbound_wins = 3, }; static const struct pcie_cfg_data bcm7712_cfg = { .offsets = pcie_offsets_bcm7712, .perst_set = brcm_pcie_perst_set_7278, .bridge_sw_init_set = brcm_pcie_bridge_sw_init_set_generic, .soc_base = BCM7712, .num_inbound_wins = 10, }; static const struct of_device_id brcm_pcie_match[] = { { .compatible = "brcm,bcm2711-pcie", .data = &bcm2711_cfg }, { .compatible = "brcm,bcm2712-pcie", .data = &bcm2712_cfg }, { .compatible = "brcm,bcm4908-pcie", .data = &bcm4908_cfg }, { .compatible = "brcm,bcm7211-pcie", .data = &generic_cfg }, { .compatible = "brcm,bcm7216-pcie", .data = &bcm7216_cfg }, { .compatible = "brcm,bcm7278-pcie", .data = &bcm7278_cfg }, { .compatible = "brcm,bcm7425-pcie", .data = &bcm7425_cfg }, { .compatible = "brcm,bcm7435-pcie", .data = &bcm7435_cfg }, { .compatible = "brcm,bcm7445-pcie", .data = &generic_cfg }, { .compatible = "brcm,bcm7712-pcie", .data = &bcm7712_cfg }, {}, }; static struct pci_ops brcm_pcie_ops = { .map_bus = brcm_pcie_map_bus, .read = pci_generic_config_read, .write = pci_generic_config_write, .add_bus = brcm_pcie_add_bus, .remove_bus = brcm_pcie_remove_bus, }; static struct pci_ops brcm7425_pcie_ops = { .map_bus = brcm7425_pcie_map_bus, .read = pci_generic_config_read32, .write = pci_generic_config_write32, .add_bus = brcm_pcie_add_bus, .remove_bus = brcm_pcie_remove_bus, }; static ssize_t debugfs_stats_trigger_write(struct file *filp, const char __user *buf, size_t count, loff_t *ppos) { struct seq_file *m = filp->private_data; struct brcm_pcie *pcie = m->private; char kbuf[16] = {}; unsigned long micros; if (count > sizeof(kbuf)) return -EOVERFLOW; if (copy_from_user(kbuf, buf, count)) return -EINVAL; if (kstrtol(kbuf, 0, µs) < 0) return -EINVAL; if (micros >= (1 << 28)) return -ERANGE; brcm_pcie_stats_trigger(pcie, micros); return count; } static int debugfs_stats_trigger_show(struct seq_file *s, void *unused) { struct brcm_pcie *pcie = s->private; u32 tmp; /* Return the state of the capture engine */ tmp = readl(pcie->base + PCIE_RC_PL_STATS_CTRL); tmp = FIELD_GET(PCIE_RC_PL_STATS_CTRL_EN_MASK, tmp); seq_printf(s, "%u\n", tmp); return 0; } DEFINE_SHOW_STORE_ATTRIBUTE(debugfs_stats_trigger); static ssize_t debugfs_stats_snapshot_write(struct file *filp, const char __user *buf, size_t count, loff_t *ppos) { struct seq_file *m = filp->private_data; struct brcm_pcie *pcie = m->private; /* Any write triggers a snapshot of the stats register set */ brcm_pcie_stats_capture(pcie); return count; } static int debugfs_stats_snapshot_show(struct seq_file *s, void *unused) { struct brcm_pcie *pcie = s->private; seq_printf(s, "tx_tlp:\t\t%llu\n", pcie->tx_tlp); seq_printf(s, "rx_tlp:\t\t%llu\n", pcie->rx_tlp); seq_printf(s, "tx_dllp:\t%llu\n", pcie->tx_dllp); seq_printf(s, "rx_dllp:\t%llu\n", pcie->rx_dllp); seq_printf(s, "pl_rx_err:\t%u\n", pcie->pl_rx_err); seq_printf(s, "dl_rx_err:\t%u\n", pcie->dl_rx_err); seq_printf(s, "tl_rx_err:\t%u\n", pcie->tl_rx_err); seq_printf(s, "l0s_exit_time:\t%u\n", pcie->l0s_exit_time); seq_printf(s, "recov_time:\t%u\n", pcie->recov_time); seq_printf(s, "l0s_fail_cnt\t%u\n", pcie->l0s_fail_cnt); seq_printf(s, "recov_cnt:\t%u\n", pcie->recov_cnt); return 0; } DEFINE_SHOW_STORE_ATTRIBUTE(debugfs_stats_snapshot); static void brcm_pcie_init_debugfs(struct brcm_pcie *pcie) { char *name; name = devm_kasprintf(pcie->dev, GFP_KERNEL, "%pOFP", pcie->dev->of_node); if (!name) return; pcie->debugfs_dir = debugfs_create_dir(name, NULL); if (!pcie->debugfs_dir) return; debugfs_create_file("stats_snapshot", 0644, pcie->debugfs_dir, pcie, &debugfs_stats_snapshot_fops); debugfs_create_file("stats_trigger", 0644, pcie->debugfs_dir, pcie, &debugfs_stats_trigger_fops); } static bool trace_ltssm; module_param(trace_ltssm, bool, 0444); MODULE_PARM_DESC(trace_ltssm, "Capture and dump link states during link training"); static int brcm_pcie_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct pci_host_bridge *bridge; const struct pcie_cfg_data *data; struct brcm_pcie *pcie; int ret; bridge = devm_pci_alloc_host_bridge(&pdev->dev, sizeof(*pcie)); if (!bridge) return -ENOMEM; data = of_device_get_match_data(&pdev->dev); if (!data) { pr_err("failed to look up compatible string\n"); return -EINVAL; } pcie = pci_host_bridge_priv(bridge); pcie->dev = &pdev->dev; pcie->np = np; pcie->cfg = data; pcie->trace_ltssm = trace_ltssm; brcm_pcie_init_debugfs(pcie); if (pcie->trace_ltssm) { pcie->ltssm_trace_buf = devm_kzalloc(&pdev->dev, sizeof(struct trace_entry) * TRACE_BUF_LEN, GFP_KERNEL); if (!pcie->ltssm_trace_buf) { dev_err(&pdev->dev, "could not allocate trace buffer\n"); return -ENOMEM; } } pcie->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pcie->base)) return PTR_ERR(pcie->base); pcie->clk = devm_clk_get_optional(&pdev->dev, "sw_pcie"); if (IS_ERR(pcie->clk)) return PTR_ERR(pcie->clk); ret = of_pci_get_max_link_speed(np); pcie->gen = (ret < 0) ? 0 : ret; pcie->ssc = !(pcie->cfg->quirks & CFG_QUIRK_NO_SSC) && of_property_read_bool(np, "brcm,enable-ssc"); of_property_read_u32(np, "brcm,tperst-clk-ms", &pcie->tperst_clk_ms); pcie->rescal = devm_reset_control_get_optional_shared(&pdev->dev, "rescal"); if (IS_ERR(pcie->rescal)) return PTR_ERR(pcie->rescal); pcie->perst_reset = devm_reset_control_get_optional_exclusive(&pdev->dev, "perst"); if (IS_ERR(pcie->perst_reset)) return PTR_ERR(pcie->perst_reset); pcie->bridge_reset = devm_reset_control_get_optional_exclusive(&pdev->dev, "bridge"); if (IS_ERR(pcie->bridge_reset)) return PTR_ERR(pcie->bridge_reset); pcie->swinit_reset = devm_reset_control_get_optional_exclusive(&pdev->dev, "swinit"); if (IS_ERR(pcie->swinit_reset)) return PTR_ERR(pcie->swinit_reset); ret = clk_prepare_enable(pcie->clk); if (ret) return dev_err_probe(&pdev->dev, ret, "could not enable clock\n"); pcie->cfg->bridge_sw_init_set(pcie, 0); if (pcie->swinit_reset) { ret = reset_control_assert(pcie->swinit_reset); if (ret) { clk_disable_unprepare(pcie->clk); return dev_err_probe(&pdev->dev, ret, "could not assert reset 'swinit'\n"); } /* HW team recommends 1us for proper sync and propagation of reset */ udelay(1); ret = reset_control_deassert(pcie->swinit_reset); if (ret) { clk_disable_unprepare(pcie->clk); return dev_err_probe(&pdev->dev, ret, "could not de-assert reset 'swinit'\n"); } } ret = reset_control_reset(pcie->rescal); if (ret) { clk_disable_unprepare(pcie->clk); return dev_err_probe(&pdev->dev, ret, "failed to deassert 'rescal'\n"); } ret = brcm_phy_start(pcie); if (ret) { reset_control_rearm(pcie->rescal); clk_disable_unprepare(pcie->clk); return ret; } ret = brcm_pcie_setup(pcie); if (ret) goto fail; pcie->hw_rev = readl(pcie->base + PCIE_MISC_REVISION); if (pcie->cfg->soc_base == BCM4908 && pcie->hw_rev >= BRCM_PCIE_HW_REV_3_20) { dev_err(pcie->dev, "hardware revision with unsupported PERST# setup\n"); ret = -ENODEV; goto fail; } if (pci_msi_enabled()) { struct device_node *msi_np = of_parse_phandle(pcie->np, "msi-parent", 0); if (msi_np == pcie->np) ret = brcm_pcie_enable_msi(pcie); of_node_put(msi_np); if (ret) { dev_err(pcie->dev, "probe of internal MSI failed"); goto fail; } } bridge->ops = pcie->cfg->soc_base == BCM7425 ? &brcm7425_pcie_ops : &brcm_pcie_ops; bridge->sysdata = pcie; platform_set_drvdata(pdev, pcie); ret = pci_host_probe(bridge); if (!ret && !brcm_pcie_link_up(pcie)) ret = -ENODEV; if (ret) { brcm_pcie_remove(pdev); return ret; } return 0; fail: __brcm_pcie_remove(pcie); return ret; } MODULE_DEVICE_TABLE(of, brcm_pcie_match); static const struct dev_pm_ops brcm_pcie_pm_ops = { .suspend_noirq = brcm_pcie_suspend_noirq, .resume_noirq = brcm_pcie_resume_noirq, }; static struct platform_driver brcm_pcie_driver = { .probe = brcm_pcie_probe, .remove = brcm_pcie_remove, .driver = { .name = "brcm-pcie", .of_match_table = brcm_pcie_match, .pm = &brcm_pcie_pm_ops, }, }; module_platform_driver(brcm_pcie_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Broadcom STB PCIe RC driver"); MODULE_AUTHOR("Broadcom"); MODULE_SOFTDEP("pre: irq_bcm2712_mip");