1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
|
#+TITLE: GNU Privacy Guard (GnuPG) Made Easy Python Bindings HOWTO (English)
#+LATEX_COMPILER: xelatex
#+LATEX_CLASS: article
#+LATEX_CLASS_OPTIONS: [12pt]
#+LATEX_HEADER: \usepackage{xltxtra}
#+LATEX_HEADER: \usepackage[margin=1in]{geometry}
#+LATEX_HEADER: \setmainfont[Ligatures={Common}]{Times New Roman}
#+LATEX_HEADER: \author{Ben McGinnes <[email protected]>}
* Introduction
:PROPERTIES:
:CUSTOM_ID: intro
:END:
| Version: | 0.0.1-alpha |
| Author: | Ben McGinnes <[email protected]> |
| Author GPG Key: | DB4724E6FA4286C92B4E55C4321E4E2373590E5D |
| Language: | English |
This document provides basic instruction in how to use the GPGME
Python bindings to programmatically leverage the GPGME library.
* GPGME Concepts
:PROPERTIES:
:CUSTOM_ID: gpgme-concepts
:END:
** A C API
:PROPERTIES:
:CUSTOM_ID: gpgme-c-api
:END:
Unlike many modern APIs with which programmers will be more
familiar with these days, the GPGME API is a C API. The API is
intended for use by C coders who would be able to access its
features by including the =gpgme.h= header file eith their own C
source code and then access its functions just as they would any
other C headers.
This is a very effective method of gaining complete access to the
API and in the most efficient manner possible. It does, however,
have the drawback that it cannot be directly used by other
languages without some means of providing an interface to those
languages. This is where the need for bindings in various
languages stems.
** Python bindings
:PROPERTIES:
:CUSTOM_ID: gpgme-python-bindings
:END:
The Python bindings for GPGME provide a higher level means of
accessing the complete feature set of GPGME itself. It also
provides a more pythonic means of calling these API functions.
The bindings are generated dynamically with SWIG and the copy of
=gpgme.h= generated when GPGME is compiled.
This means that a version of the Python bindings is fundamentally
tied to the exact same version of GPGME used to gemerate that copy
of =gpgme.h=.
** Difference between the Python bindings and other GnuPG Python packages
:PROPERTIES:
:CUSTOM_ID: gpgme-python-bindings-diffs
:END:
There have been numerous attempts to add GnuPG support to Python
over the years. Some of the most well known are listed here, along
with what differentiates them.
*** The python-gnupg package maintained by Vinay Sajip
:PROPERTIES:
:CUSTOM_ID: diffs-python-gnupg
:END:
This is arguably the most popular means of integrating GPG with
Python. The package utilises the =subprocess= module to implement
wrappers for the =gpg= and =gpg2= executables normally invoked on
the command line (=gpg.exe= and =gpg2.exe= on Windows).
The popularity of this package stemmed from its ease of use and
capability in providing the most commonly required features.
Unfortunately it has been beset by a number of security issues,
most of which stemmed from using unsafe methods of accessing the
command line via the =subprocess= calls.
The python-gnupg package is available under the MIT license.
*** The gnupg package created and maintained by Isis Lovecruft
:PROPERTIES:
:CUSTOM_ID: diffs-isis-gnupg
:END:
In 2015 Isis Lovecruft from the Tor Project forked and then
re-implemented the python-gnupg package as just gnupg. This new
package also relied on subprocess to call the =gpg= or =gpg2=
binaries, but did so somewhat more securely.
However the naming and version numbering selected for this package
resulted in conflicts with the original python-gnupg and since its
functions were called in a different manner, the release of this
package also resulted in a great deal of consternation when people
installed what they thought was an upgrade that subsequently broke
the code relying on it.
The gnupg package is available under the GNU General Public
License version 3.0 (or later).
*** The PyME package maintained by Martin Albrecht
:PROPERTIES:
:CUSTOM_ID: diffs-pyme
:END:
This package is the origin of these bindings, though they are
somewhat different now. For details of when and how the PyME
package was folded back into GPGME itself see the /Short History/
document[fn:1] in this Python bindings =docs= directory.[fn:2]
The PyME package was first released in 2002 and was also the first
attempt to implement a low level binding to GPGME. In doing so it
provided access to considerably more functionality than either the
=python-gnupg= or =gnupg= packages.
The PyME package is only available for Python 2.6 and 2.7.
Porting the PyME package to Python 3.4 in 2015 is what resulted in
it being folded into the GPGME project and the current bindings
are the end result of that effort.
The PyME package is available under the same dual licensing as
GPGME itself: the GNU General Public License version 2.0 (or any
later version) and the GNU Lesser Public License version 2.1 (or
any later version).
* GPGME Python bindings installation
:PROPERTIES:
:CUSTOM_ID: gpgme-python-install
:END:
** No PyPI
:PROPERTIES:
:CUSTOM_ID: do-not-use-pypi
:END:
Most third-party Python packages and modules are available and
distributed through the Python Package Installer, known as PyPI.
Due to the nature of what these bindings are and how they work, it
is infeasible to install the GPGME Python bindings in the same way.
** Requirements
:PROPERTIES:
:CUSTOM_ID: gpgme-python-requirements
:END:
The GPGME Python bindings only have three requirements:
1. A suitable version of Python 2 or Python 3. With Python 2 that
means Python 2.7 and with Python 3 that means Python 3.4 or
higher.
2. SWIG.
3. GPGME itself. Which also means that all of GPGME's dependencies
must be installed too.
** Installation
:PROPERTIES:
:CUSTOM_ID: installation
:END:
Installing the Python bindings is effectively achieved by compiling
and installing GPGME itself.
Once SWIG is installed with Python and all the dependencies for
GPGME are installed you only need to confirm that the version(s) of
Python you want the bindings installed for are in your =$PATH=.
By default GPGME will attempt to install the bindings for the most
recent or highest version number of Python 2 and Python 3 it
detects in =$PATH=. It specifically checks for the =python= and
=python3= executabled first and then checks for specific version
numbers.
For Python 2 it checks for these executables in this order:
=python=, =python2= and =python2.7=.
For Python 3 it checks for these executables in this order:
=python3=, =python3.6=, =python3.5= and =python3.4=.
*** Installing GPGME
:PROPERTIES:
:CUSTOM_ID: install-gpgme
:END:
See the GPGME =README= file for details of how to install GPGME from
source.
* Fundamentals
:PROPERTIES:
:CUSTOM_ID: howto-fund-a-mental
:END:
Before we can get to the fun stuff, there are a few matters
regarding GPGME's design which hold true whether you're dealing with
the C code directly or these Python bindings.
** No REST
:PROPERTIES:
:CUSTOM_ID: no-rest-for-the-wicked
:END:
The first part of which is or will be fairly blatantly obvious upon
viewing the first example, but it's worth reiterating anyway. That
being that this API is /*not*/ a REST API. Nor indeed could it
ever be one.
Most, if not all, Python programmers (and not just Python
programmers) know how easy it is to work with a RESTful API. In
fact they've become so popular that many other APIs attempt to
emulate REST-like behaviour as much as they are able. Right down
to the use of JSON formatted output to facilitate the use of their
API without having to retrain developers.
This API does not do that. It would not be able to do that and
also provide access to the entire C API on which it's built. It
does, however, provide a very pythonic interface on top of the
direct bindings and it's this pythonic layer with which this HOWTO
deals with.
** Context
:PROPERTIES:
:CUSTOM_ID: howto-get-context
:END:
One of the reasons which prevents this API from being RESTful is
that most operations require more than one instruction to the API
to perform the task. Sure, there are certain functions which can
be performed simultaneously, particularly if the result known or
strongly anticipated (e.g selecting and encrypting to a key known
to be in the public keybox).
There are many more, however, which cannot be manipulated so
readily: they must be performed in a specific sequence and the
result of one operation has a direct bearing on the outcome of
subsequent operations. Not merely by generating an error either.
When dealing with this type of persistant state on the web, full of
both the RESTful and REST-like, it's most commonly referred to as a
session. In GPGME, however, it is called a context and every
operation type has one.
* Working with keys
:PROPERTIES:
:CUSTOM_ID: howto-keys
:END:
** Counting keys
:PROPERTIES:
:CUSTOM_ID: howto-basic-verification
:END:
Counting the number of keys in your public keybox (=pubring.kbx=),
the format which has superceded the old keyring format
(=pubring.gpg= and =secring.gpg=), or the number of secret keys is
a very simple task.
#+begin_src python
import gpg
c = gpg.Context()
seckeys = c.keylist(pattern=None, secret=True)
pubkeys = c.keylist(pattern=None, secret=False)
seclist = list(seckeys)
secnum = len(seclist)
publist = list(pubkeys)
pubnum = len(publist)
print("""
Number of secret keys: {0}
Number of public keys: {1}
""".format(secnum, pubnum)
#+end_src
* Basic Functions
:PROPERTIES:
:CUSTOM_ID: howto-the-basics
:END:
The most frequently called features of any cryptographic library
will be the most fundamental tasks for enxryption software. In this
section we will look at how to programmatically encrypt data,
decrypt it, sign it and verify signatures.
** Encryption
:PROPERTIES:
:CUSTOM_ID: howto-basic-encryption
:END:
Encrypting is very straight forward. In the first example below
the message, =text=, is encrypted to a single recipient's key. In
the second example the message will be encrypted to multiple
recipients.
*** Encrypting to one key
:PROPERTIES:
:CUSTOM_ID: howto-basic-encryption-single
:END:
The text is then encapsulated in a GPGME Data object as =plain= and
the =cipher= object is created with another Data object. Then we
create the Context as =c= and set it to use the ASCII armoured
OpenPGP format. In later examples there will be alternative
methods of setting the OpenPGP output to be ASCII armoured.
Next we prepare a keylist object in our Context and follow it with
specifying the recipients as =r=. Note that the configuration in
one's =gpg.conf= file is honoured, so if you have the options set
to encrypt to one key or to a default key, that will be included
with this operation.
This is followed by a quick check to be sure that the recipient is
actually selected and that the key is available. Assuming it is,
the encryption can proceed, but if not a message will print stating
the key was not found.
The encryption operation is invoked within the Context with the
=c.op_encrypt= function, loading the recipien (=r=), the message
(=plain=) and the =cipher=. The =cipher.seek= uses =os.SEEK_SET=
to set the data to the correct byte format for GPGME to use it.
At this point we no longer need the plaintext material, so we
delete both the =text= and the =plain= objects. Then we write the
encrypted data out to a file, =secret_plans.txt.asc=.
#+begin_src python
import gpg
import os
rkey = "0x12345678DEADBEEF"
text = """
Some plain text to test with. Obtained from any input source Python can read.
It makes no difference whether it is string or bytes, but the bindings always
produce byte output data. Which is useful to know when writing out either the
encrypted or decrypted results.
"""
plain = gpg.core.Data(text)
cipher = gpg.core.Data()
c = gpg.core.Context()
c.set_armor(1)
c.op_keylist_start(rkey, 0)
r = c.op_keylist_next()
if r == None:
print("""The key for user "{0}" was not found""".format(rkey))
else:
try:
c.op_encrypt([r], 1, plain, cipher)
cipher.seek(0, os.SEEK_SET)
del(text)
del(plain)
afile = open("secret_plans.txt.asc", "wb")
afile.write(cipher.read())
afile.close()
except gpg.errors.GPGMEError as ex:
print(ex.getstring())
#+end_src
*** Encrypting to multiple keys
:PROPERTIES:
:CUSTOM_ID: howto-basic-encryption-multiple
:END:
Encrypting to multiple keys, in addition to a default key or a key
configured to always encrypt to, is a little different and uses a
slightly different call to the =op_encrypt call= demonstrated in the
previous section.
The following example encrypts a message (=text=) to everyone with
an email address on the =gnupg.org= domain,[fn:3] but does /not/ encrypt
to a default key or other key which is configured to normally
encrypt to.
#+begin_src python
import gpg
text = b"""Oh look, another test message.
The same rules apply as with the previous example and more likely
than not, the message will actually be drawn from reading the
contents of a file or, maybe, from entering data at an input()
prompt.
Since the text in this case must be bytes, it is most likely that
the input form will be a separate file which is opened with "rb"
as this is the simplest method of obtaining the correct data
format.
"""
c = gpg.Context(armor=True)
rpattern = list(c.keylist(pattern="@gnupg.org", secret=False))
rlogrus = []
for i in range(len(rpattern)):
if rpattern[i].can_encrypt == 1:
rlogrus.append(rpattern[i])
cipher = c.encrypt(text, recipients=rlogrus, sign=False, always_trust=True)
afile = open("secret_plans.txt.asc", "wb")
afile.write(cipher[0])
afile.close()
#+end_src
All it would take to change the above example to sign the message
and also encrypt the message to any configured default keys would
be to change the =c.encrypt= line to this:
#+begin_src python
cipher = c.encrypt(text, recipients=rlogrus, always_trust=True,
add_encrypt_to=True)
#+end_src
The only keyword arguments requiring modification are those for
which the default values are changing. The default value of
=sign= is =True=, the default of =always_trust= is =False=, the
default of =add_encrypt_to= is =False=.
If =always_trust= is not set to =True= and any of the recipient
keys are not trusted (e.g. not signed or locally signed) then the
encryption will raise an error. It is possible to mitigate this
somewhat with something more like this:
#+begin_src python
import gpg
afile = open("secret_plans.txt", "rb")
text = afile.read()
afile.close()
c = gpg.Context(armor=True)
rpattern = list(c.keylist(pattern="@gnupg.org", secret=False))
rlogrus = []
for i in range(len(rpattern)):
if rpattern[i].can_encrypt == 1:
rlogrus.append(rpattern[i])
try:
cipher = c.encrypt(text, recipients=rlogrus, add_encrypt_to=True)
except gpg.errors.InvalidRecipients as e:
for i in range(len(e.recipients)):
for n in range(len(rlogrus)):
if rlogrus[n].fpr == e.recipients[i].fpr:
rlogrus.remove(rlogrus[n])
else:
pass
try:
cipher = c.encrypt(text, recipients=rlogrus, add_encrypt_to=True)
except:
pass
afile = open("secret_plans.txt.asc", "wb")
afile.write(cipher[0])
afile.close()
#+end_src
This will attempt to encrypt to all the keys searched for, then
remove invalid recipients if it fails and try again.
** Decryption
:PROPERTIES:
:CUSTOM_ID: howto-basic-encryption
:END:
Decrypting something encrypted to a key in one's secret keyring is
fairly straight forward.
In this example code, however, preconfiguring either
=gpg.Context()= or =gpg.core.Context()= as =c= is unnecessary
because there is no need to modify the Context prior to conducting
the decryption and since the Context is only used once, setting it
to =c= simply adds lines for no gain.
#+begin_src python
import os.path
import gpg
if os.path.exists("/path/to/secret_plans.txt.asc") is True:
ciphertext = "/path/to/secret_plans.txt.asc"
elif os.path.exists("/path/to/secret_plans.txt.gpg") is True:
ciphertext = "/path/to/secret_plans.txt.gpg"
else:
ciphertext = None
if ciphertext is not None:
afile = open(ciphertext, "rb")
plaintext = gpg.Context().decrypt(afile)
afile.close()
newfile = open("/path/to/secret_plans.txt", "wb")
newfile.write(plaintext[0])
newfile.close()
print(plaintext[0])
plaintext[1]
plaintext[2]
del(plaintext)
else:
pass
#+end_src
The data available in plaintext in this example is the decrypted
content as a byte object in =plaintext[0]=, the recipient key IDs
and algorithms in =plaintext[1]= and the results of verifying any
signatures of the data in =plaintext[0]=.
** Signing text and files
:PROPERTIES:
:CUSTOM_ID: howto-basic-signing
:END:
Need to determine whether or not to include clearsigning and
detached signing here or give them separate sections. Yes, section
them.
*** Signing key selection
:PROPERTIES:
:CUSTOM_ID: howto-basic-signing-signers
:END:
By default GPGME and the Python bindings will use the default key
configured for the user invoking the GPGME API. If there is no
default key specified and there is more than one secret key
available it may be necessary to specify the key or keys with
which to sign messages and files.
*** Normal or default signing messages or files
:PROPERTIES:
:CUSTOM_ID: howto-basic-signing-normal
:END:
#+begin_src python
import gpg
text = b"""Declaration of ... something.
"""
c = gpg.Context()
c.armor = True
signed = c.sign(text, mode=0)
afile = open("/path/to/statement.txt.asc", "wb")
for i in range(len(signed[0].splitlines())):
afile.write("{0}\n".format(signed[0].splitlines()[i]))
afile.close()
#+end_src
#+begin_src python
import gpg
tfile = open("/path/to/statement.txt", "rb")
text = tfile.read()
tfile.close()
c = gpg.Context()
signed = c.sign(text, mode=0)
afile = open("/path/to/statement.txt.sig", "wb")
afile.write(signed[0])
afile.close()
#+end_src
*** Detached signing messages and files
:PROPERTIES:
:CUSTOM_ID: howto-basic-signing-detached
:END:
Detached ASCII Armoured signing:
#+begin_src python
import gpg
text = b"""Declaration of ... something.
"""
c = gpg.Context()
c.armor = True
signed = c.sign(text, mode=1)
afile = open("/path/to/statement.txt.asc", "wb")
for i in range(len(signed[0].splitlines())):
afile.write("{0}\n".format(signed[0].splitlines()[i]))
afile.close()
#+end_src
Detached binary signing of a file.
#+begin_src python
import gpg
tfile = open("/path/to/statement.txt", "rb")
text = tfile.read()
tfile.close()
c = gpg.Context()
signed = c.sign(text, mode=1)
afile = open("/path/to/statement.txt.sig", "wb")
afile.write(signed[0])
afile.close()
#+end_src
*** Clearsigning messages or text
:PROPERTIES:
:CUSTOM_ID: howto-basic-signing-clear
:END:
#+begin_src python
import gpg
text = """Declaration of ... something.
"""
c = gpg.Context()
signed = c.sign(text, mode=2)
afile = open("/path/to/statement.txt.asc", "w")
for i in range(len(signed[0].splitlines())):
afile.write("{0}\n".format(signed[0].splitlines()[i].decode('utf-8')))
afile.close()
#+end_src
** Signature verification
:PROPERTIES:
:CUSTOM_ID: howto-basic-verification
:END:
Verify a signed file, both detached and not:
#+begin_src python
import gpg
import sys
import time
c = gpg.Context()
data, result = c.verify(open(filename),
open(detached_sig_filename)
if detached_sig_filename else None)
for index, sign in enumerate(result.signatures):
print("signature", index, ":")
print(" summary: %#0x" % (sign.summary))
print(" status: %#0x" % (sign.status))
print(" timestamp: ", sign.timestamp)
print(" timestamp: ", time.ctime(sign.timestamp))
print(" fingerprint:", sign.fpr)
print(" uid: ", c.get_key(sign.fpr).uids[0].uid)
if data:
sys.stdout.buffer.write(data)
#+end_src
* Miscellaneous work-arounds
:PROPERTIES:
:CUSTOM_ID: cheats-and-hacks
:END:
** Group lines
:PROPERTIES:
:CUSTOM_ID: group-lines
:END:
There is not yet an easy way to access groups configured in the
gpg.conf file from within GPGME. As a consequence these central
groupings of keys cannot be shared amongst multiple programs, such
as MUAs readily.
The following code, however, provides a work-around for obtaining
this information in Python.
#+begin_src python
import subprocess
lines = subprocess.getoutput("gpgconf --list-options gpg").splitlines()
for i in range(len(lines)):
if lines[i].startswith("group") is True:
line = lines[i]
else:
pass
groups = line.split(":")[-1].replace('"', '').split(',')
group_lines = groups
for i in range(len(group_lines)):
group_lines[i] = group_lines[i].split("=")
group_lists = group_lines
for i in range(len(group_lists)):
group_lists[i][1] = group_lists[i][1].split()
#+end_src
The result of that code is that =group_lines= is a list of lists
where =group_lines[i][0]= is the name of the group and
=group_lines[i][1]= is the key IDs of the group as a string.
The =group_lists= result is very similar in that it is a list of
lists. The first part, =group_lists[i][0]= matches
=group_lines[i][0]= as the name of the group, but
=group_lists[i][1]= is the key IDs of the group as a string.
* Copyright and Licensing
:PROPERTIES:
:CUSTOM_ID: copyright-and-license
:END:
** Copyright (C) The GnuPG Project, 2018
:PROPERTIES:
:CUSTOM_ID: copyright
:END:
Copyright © The GnuPG Project, 2018.
** License GPL compatible
:PROPERTIES:
:CUSTOM_ID: license
:END:
This file is free software; as a special exception the author gives
unlimited permission to copy and/or distribute it, with or without
modifications, as long as this notice is preserved.
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY, to the extent permitted by law; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.
* Footnotes
[fn:1] =Short_History.org= and/or =Short_History.html=.
[fn:2] The =lang/python/docs/= directory in the GPGME source.
[fn:3] You probably don't really want to do this. Searching the
keyservers for "gnupg.org" produces over 400 results, the majority of
which aren't actually at the gnupg.org domain, but just included a
comment regarding the project in their key somewhere.
|