aboutsummaryrefslogtreecommitdiffstats
path: root/cipher/rsa.c
diff options
context:
space:
mode:
Diffstat (limited to 'cipher/rsa.c')
-rw-r--r--cipher/rsa.c214
1 files changed, 0 insertions, 214 deletions
diff --git a/cipher/rsa.c b/cipher/rsa.c
deleted file mode 100644
index db82b48d7..000000000
--- a/cipher/rsa.c
+++ /dev/null
@@ -1,214 +0,0 @@
-/* rsa.c - RSA function
- * Copyright (c) 1997 by Werner Koch (dd9jn)
- *
- * ATTENTION: This code should not be exported from the United States
- * nor should it be used their without a license agreement with PKP.
- * The RSA alorithm is protected by U.S. Patent #4,405,829 which
- * expires on September 20, 2000!
- *
- * For a description of the algorithm, see:
- * Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
- * ISBN 0-471-11709-9. Pages 466 ff.
- *
- * This file is part of G10.
- *
- * G10 is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * G10 is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
- */
-
-#include <config.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include "util.h"
-#include "mpi.h"
-#include "cipher.h"
-
-
-void
-rsa_free_public_key( RSA_public_key *pk )
-{
- mpi_free( pk->n ); pk->n = NULL;
- mpi_free( pk->e ); pk->e = NULL;
-}
-
-void
-rsa_free_secret_key( RSA_secret_key *sk )
-{
- mpi_free( sk->e ); sk->e = NULL;
- mpi_free( sk->n ); sk->n = NULL;
- mpi_free( sk->p ); sk->p = NULL;
- mpi_free( sk->q ); sk->q = NULL;
- mpi_free( sk->d ); sk->d = NULL;
- mpi_free( sk->u ); sk->u = NULL;
-}
-
-
-static void
-test_keys( RSA_public_key *pk, RSA_secret_key *sk, unsigned nbits )
-{
- MPI test = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
- MPI out1 = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
- MPI out2 = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
-
- mpi_set_bytes( test, nbits, get_random_byte, 0 );
-
- rsa_public( out1, test, pk );
- rsa_secret( out2, out1, sk );
- if( mpi_cmp( test, out2 ) )
- log_fatal("RSA operation: public, secret failed\n");
- rsa_secret( out1, test, sk );
- rsa_public( out2, out1, pk );
- if( mpi_cmp( test, out2 ) )
- log_fatal("RSA operation: secret, public failed\n");
- mpi_free( test );
- mpi_free( out1 );
- mpi_free( out2 );
-}
-
-/****************
- * Generate a key pair with a key of size NBITS
- * Returns: 2 structures filles with all needed values
- */
-void
-rsa_generate( RSA_public_key *pk, RSA_secret_key *sk, unsigned nbits )
-{
- MPI p, q; /* the two primes */
- MPI d; /* the private key */
- MPI u;
- MPI t1, t2;
- MPI n; /* the public key */
- MPI e; /* the exponent */
- MPI phi; /* helper: (p-a)(q-1) */
- MPI g;
- MPI f;
-
- /* select two (very secret) primes */
- p = generate_secret_prime( nbits / 2 );
- q = generate_secret_prime( nbits / 2 );
- if( mpi_cmp( p, q ) > 0 ) /* p shall be smaller than q (for calc of u)*/
- mpi_swap(p,q);
- /* calculate Euler totient: phi = (p-1)(q-1) */
- t1 = mpi_alloc_secure( mpi_get_nlimbs(p) );
- t2 = mpi_alloc_secure( mpi_get_nlimbs(p) );
- phi = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB );
- g = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB );
- f = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB );
- mpi_sub_ui( t1, p, 1 );
- mpi_sub_ui( t2, q, 1 );
- mpi_mul( phi, t1, t2 );
- mpi_gcd(g, t1, t2);
- mpi_fdiv_q(f, phi, g);
- /* multiply them to make the private key */
- n = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
- mpi_mul( n, p, q );
- /* find a public exponent */
- e = mpi_alloc(1);
- mpi_set_ui( e, 17); /* start with 17 */
- while( !mpi_gcd(t1, e, phi) ) /* (while gcd is not 1) */
- mpi_add_ui( e, e, 2);
- /* calculate the secret key d = e^1 mod phi */
- d = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
- mpi_invm(d, e, f );
- /* calculate the inverse of p and q (used for chinese remainder theorem)*/
- u = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
- mpi_invm(u, p, q );
-
- if( DBG_CIPHER ) {
- log_mpidump(" p= ", p );
- log_mpidump(" q= ", q );
- log_mpidump("phi= ", phi );
- log_mpidump(" g= ", g );
- log_mpidump(" f= ", f );
- log_mpidump(" n= ", n );
- log_mpidump(" e= ", e );
- log_mpidump(" d= ", d );
- log_mpidump(" u= ", u );
- }
-
- mpi_free(t1);
- mpi_free(t2);
- mpi_free(phi);
- mpi_free(f);
- mpi_free(g);
-
- pk->n = mpi_copy(n);
- pk->e = mpi_copy(e);
- sk->n = n;
- sk->e = e;
- sk->p = p;
- sk->q = q;
- sk->d = d;
- sk->u = u;
-
- /* now we can test our keys (this should never fail!) */
- test_keys( pk, sk, nbits - 64 );
-}
-
-
-/****************
- * Test wether the secret key is valid.
- * Returns: true if this is a valid key.
- */
-int
-rsa_check_secret_key( RSA_secret_key *sk )
-{
- int rc;
- MPI temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 );
-
- mpi_mul(temp, sk->p, sk->q );
- rc = mpi_cmp( temp, sk->n );
- mpi_free(temp);
- return !rc;
-}
-
-
-
-/****************
- * Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
- *
- * c = m^e mod n
- *
- * Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
- */
-void
-rsa_public(MPI output, MPI input, RSA_public_key *pkey )
-{
- if( output == input ) { /* powm doesn't like output and input the same */
- MPI x = mpi_alloc( mpi_get_nlimbs(input)*2 );
- mpi_powm( x, input, pkey->e, pkey->n );
- mpi_set(output, x);
- mpi_free(x);
- }
- else
- mpi_powm( output, input, pkey->e, pkey->n );
-}
-
-/****************
- * Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
- *
- * m = c^d mod n
- *
- * Where m is OUTPUT, c is INPUT and d,n are elements of PKEY.
- *
- * FIXME: We should better use the Chinese Remainder Theorem
- */
-void
-rsa_secret(MPI output, MPI input, RSA_secret_key *skey )
-{
- mpi_powm( output, input, skey->d, skey->n );
-}
-
-
-