aboutsummaryrefslogtreecommitdiffstats
path: root/cipher/rsa.c
diff options
context:
space:
mode:
Diffstat (limited to 'cipher/rsa.c')
-rw-r--r--cipher/rsa.c494
1 files changed, 494 insertions, 0 deletions
diff --git a/cipher/rsa.c b/cipher/rsa.c
new file mode 100644
index 000000000..e438b39cf
--- /dev/null
+++ b/cipher/rsa.c
@@ -0,0 +1,494 @@
+/* rsa.c - RSA function
+ * Copyright (C) 1997, 1998, 1999 by Werner Koch (dd9jn)
+ * Copyright (C) 2000, 2001 Free Software Foundation, Inc.
+ *
+ * This file is part of GnuPG.
+ *
+ * GnuPG is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * GnuPG is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+ */
+
+/* This code uses an algorithm protected by U.S. Patent #4,405,829
+ which expires on September 20, 2000. The patent holder placed that
+ patent into the public domain on Sep 6th, 2000.
+*/
+
+#include <config.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "util.h"
+#include "mpi.h"
+#include "cipher.h"
+#include "rsa.h"
+
+
+typedef struct {
+ MPI n; /* modulus */
+ MPI e; /* exponent */
+} RSA_public_key;
+
+
+typedef struct {
+ MPI n; /* public modulus */
+ MPI e; /* public exponent */
+ MPI d; /* exponent */
+ MPI p; /* prime p. */
+ MPI q; /* prime q. */
+ MPI u; /* inverse of p mod q. */
+} RSA_secret_key;
+
+
+static void test_keys( RSA_secret_key *sk, unsigned nbits );
+static void generate( RSA_secret_key *sk, unsigned nbits );
+static int check_secret_key( RSA_secret_key *sk );
+static void public(MPI output, MPI input, RSA_public_key *skey );
+static void secret(MPI output, MPI input, RSA_secret_key *skey );
+
+
+static void
+test_keys( RSA_secret_key *sk, unsigned nbits )
+{
+ RSA_public_key pk;
+ MPI test = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
+ MPI out1 = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
+ MPI out2 = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
+
+ pk.n = sk->n;
+ pk.e = sk->e;
+ { char *p = get_random_bits( nbits, 0, 0 );
+ mpi_set_buffer( test, p, (nbits+7)/8, 0 );
+ m_free(p);
+ }
+
+ public( out1, test, &pk );
+ secret( out2, out1, sk );
+ if( mpi_cmp( test, out2 ) )
+ log_fatal("RSA operation: public, secret failed\n");
+ secret( out1, test, sk );
+ public( out2, out1, &pk );
+ if( mpi_cmp( test, out2 ) )
+ log_fatal("RSA operation: secret, public failed\n");
+ mpi_free( test );
+ mpi_free( out1 );
+ mpi_free( out2 );
+}
+
+/****************
+ * Generate a key pair with a key of size NBITS
+ * Returns: 2 structures filled with all needed values
+ */
+static void
+generate( RSA_secret_key *sk, unsigned nbits )
+{
+ MPI p, q; /* the two primes */
+ MPI d; /* the private key */
+ MPI u;
+ MPI t1, t2;
+ MPI n; /* the public key */
+ MPI e; /* the exponent */
+ MPI phi; /* helper: (p-1)(q-1) */
+ MPI g;
+ MPI f;
+
+ /* make sure that nbits is even so that we generate p, q of equal size */
+ if ( (nbits&1) )
+ nbits++;
+
+ n = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
+
+ p = q = NULL;
+ do {
+ /* select two (very secret) primes */
+ if (p)
+ mpi_free (p);
+ if (q)
+ mpi_free (q);
+ p = generate_secret_prime( nbits / 2 );
+ q = generate_secret_prime( nbits / 2 );
+ if( mpi_cmp( p, q ) > 0 ) /* p shall be smaller than q (for calc of u)*/
+ mpi_swap(p,q);
+ /* calculate the modulus */
+ mpi_mul( n, p, q );
+ } while ( mpi_get_nbits(n) != nbits );
+
+ /* calculate Euler totient: phi = (p-1)(q-1) */
+ t1 = mpi_alloc_secure( mpi_get_nlimbs(p) );
+ t2 = mpi_alloc_secure( mpi_get_nlimbs(p) );
+ phi = mpi_alloc_secure( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
+ g = mpi_alloc_secure( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
+ f = mpi_alloc_secure( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
+ mpi_sub_ui( t1, p, 1 );
+ mpi_sub_ui( t2, q, 1 );
+ mpi_mul( phi, t1, t2 );
+ mpi_gcd(g, t1, t2);
+ mpi_fdiv_q(f, phi, g);
+
+ /* find an public exponent.
+ We use 41 as this is quite fast and more secure than the
+ commonly used 17. Benchmarking the RSA verify function
+ with a 1024 bit key yields (2001-11-08):
+ e=17 0.54 ms
+ e=41 0.75 ms
+ e=257 0.95 ms
+ e=65537 1.80 ms
+ */
+ e = mpi_alloc( (32+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
+ mpi_set_ui( e, 41);
+ if( !mpi_gcd(t1, e, phi) ) {
+ mpi_set_ui( e, 257);
+ if( !mpi_gcd(t1, e, phi) ) {
+ mpi_set_ui( e, 65537);
+ while( !mpi_gcd(t1, e, phi) ) /* (while gcd is not 1) */
+ mpi_add_ui( e, e, 2);
+ }
+ }
+
+ /* calculate the secret key d = e^1 mod phi */
+ d = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
+ mpi_invm(d, e, f );
+ /* calculate the inverse of p and q (used for chinese remainder theorem)*/
+ u = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
+ mpi_invm(u, p, q );
+
+ if( DBG_CIPHER ) {
+ log_mpidump(" p= ", p );
+ log_mpidump(" q= ", q );
+ log_mpidump("phi= ", phi );
+ log_mpidump(" g= ", g );
+ log_mpidump(" f= ", f );
+ log_mpidump(" n= ", n );
+ log_mpidump(" e= ", e );
+ log_mpidump(" d= ", d );
+ log_mpidump(" u= ", u );
+ }
+
+ mpi_free(t1);
+ mpi_free(t2);
+ mpi_free(phi);
+ mpi_free(f);
+ mpi_free(g);
+
+ sk->n = n;
+ sk->e = e;
+ sk->p = p;
+ sk->q = q;
+ sk->d = d;
+ sk->u = u;
+
+ /* now we can test our keys (this should never fail!) */
+ test_keys( sk, nbits - 64 );
+}
+
+
+/****************
+ * Test wether the secret key is valid.
+ * Returns: true if this is a valid key.
+ */
+static int
+check_secret_key( RSA_secret_key *sk )
+{
+ int rc;
+ MPI temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 );
+
+ mpi_mul(temp, sk->p, sk->q );
+ rc = mpi_cmp( temp, sk->n );
+ mpi_free(temp);
+ return !rc;
+}
+
+
+
+/****************
+ * Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
+ *
+ * c = m^e mod n
+ *
+ * Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
+ */
+static void
+public(MPI output, MPI input, RSA_public_key *pkey )
+{
+ if( output == input ) { /* powm doesn't like output and input the same */
+ MPI x = mpi_alloc( mpi_get_nlimbs(input)*2 );
+ mpi_powm( x, input, pkey->e, pkey->n );
+ mpi_set(output, x);
+ mpi_free(x);
+ }
+ else
+ mpi_powm( output, input, pkey->e, pkey->n );
+}
+
+#if 0
+static void
+stronger_key_check ( RSA_secret_key *skey )
+{
+ MPI t = mpi_alloc_secure ( 0 );
+ MPI t1 = mpi_alloc_secure ( 0 );
+ MPI t2 = mpi_alloc_secure ( 0 );
+ MPI phi = mpi_alloc_secure ( 0 );
+
+ /* check that n == p * q */
+ mpi_mul( t, skey->p, skey->q);
+ if (mpi_cmp( t, skey->n) )
+ log_info ( "RSA Oops: n != p * q\n" );
+
+ /* check that p is less than q */
+ if( mpi_cmp( skey->p, skey->q ) > 0 )
+ log_info ("RSA Oops: p >= q\n");
+
+
+ /* check that e divides neither p-1 nor q-1 */
+ mpi_sub_ui(t, skey->p, 1 );
+ mpi_fdiv_r(t, t, skey->e );
+ if ( !mpi_cmp_ui( t, 0) )
+ log_info ( "RSA Oops: e divides p-1\n" );
+ mpi_sub_ui(t, skey->q, 1 );
+ mpi_fdiv_r(t, t, skey->e );
+ if ( !mpi_cmp_ui( t, 0) )
+ log_info ( "RSA Oops: e divides q-1\n" );
+
+ /* check that d is correct */
+ mpi_sub_ui( t1, skey->p, 1 );
+ mpi_sub_ui( t2, skey->q, 1 );
+ mpi_mul( phi, t1, t2 );
+ mpi_gcd(t, t1, t2);
+ mpi_fdiv_q(t, phi, t);
+ mpi_invm(t, skey->e, t );
+ if ( mpi_cmp(t, skey->d ) )
+ log_info ( "RSA Oops: d is wrong\n");
+
+ /* check for crrectness of u */
+ mpi_invm(t, skey->p, skey->q );
+ if ( mpi_cmp(t, skey->u ) )
+ log_info ( "RSA Oops: u is wrong\n");
+
+ log_info ( "RSA secret key check finished\n");
+
+ mpi_free (t);
+ mpi_free (t1);
+ mpi_free (t2);
+ mpi_free (phi);
+}
+#endif
+
+
+/****************
+ * Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
+ *
+ * m = c^d mod n
+ *
+ * Or faster:
+ *
+ * m1 = c ^ (d mod (p-1)) mod p
+ * m2 = c ^ (d mod (q-1)) mod q
+ * h = u * (m2 - m1) mod q
+ * m = m1 + h * p
+ *
+ * Where m is OUTPUT, c is INPUT and d,n,p,q,u are elements of SKEY.
+ */
+static void
+secret(MPI output, MPI input, RSA_secret_key *skey )
+{
+ #if 0
+ mpi_powm( output, input, skey->d, skey->n );
+ #else
+ MPI m1 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
+ MPI m2 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
+ MPI h = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
+
+ /* m1 = c ^ (d mod (p-1)) mod p */
+ mpi_sub_ui( h, skey->p, 1 );
+ mpi_fdiv_r( h, skey->d, h );
+ mpi_powm( m1, input, h, skey->p );
+ /* m2 = c ^ (d mod (q-1)) mod q */
+ mpi_sub_ui( h, skey->q, 1 );
+ mpi_fdiv_r( h, skey->d, h );
+ mpi_powm( m2, input, h, skey->q );
+ /* h = u * ( m2 - m1 ) mod q */
+ mpi_sub( h, m2, m1 );
+ if ( mpi_is_neg( h ) )
+ mpi_add ( h, h, skey->q );
+ mpi_mulm( h, skey->u, h, skey->q );
+ /* m = m2 + h * p */
+ mpi_mul ( h, h, skey->p );
+ mpi_add ( output, m1, h );
+ /* ready */
+
+ mpi_free ( h );
+ mpi_free ( m1 );
+ mpi_free ( m2 );
+ #endif
+}
+
+
+/*********************************************
+ ************** interface ******************
+ *********************************************/
+
+int
+rsa_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
+{
+ RSA_secret_key sk;
+
+ if( !is_RSA(algo) )
+ return G10ERR_PUBKEY_ALGO;
+
+ generate( &sk, nbits );
+ skey[0] = sk.n;
+ skey[1] = sk.e;
+ skey[2] = sk.d;
+ skey[3] = sk.p;
+ skey[4] = sk.q;
+ skey[5] = sk.u;
+ /* make an empty list of factors */
+ *retfactors = m_alloc_clear( 1 * sizeof **retfactors );
+ return 0;
+}
+
+
+int
+rsa_check_secret_key( int algo, MPI *skey )
+{
+ RSA_secret_key sk;
+
+ if( !is_RSA(algo) )
+ return G10ERR_PUBKEY_ALGO;
+
+ sk.n = skey[0];
+ sk.e = skey[1];
+ sk.d = skey[2];
+ sk.p = skey[3];
+ sk.q = skey[4];
+ sk.u = skey[5];
+ if( !check_secret_key( &sk ) )
+ return G10ERR_BAD_SECKEY;
+
+ return 0;
+}
+
+
+
+int
+rsa_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
+{
+ RSA_public_key pk;
+
+ if( algo != 1 && algo != 2 )
+ return G10ERR_PUBKEY_ALGO;
+
+ pk.n = pkey[0];
+ pk.e = pkey[1];
+ resarr[0] = mpi_alloc( mpi_get_nlimbs( pk.n ) );
+ public( resarr[0], data, &pk );
+ return 0;
+}
+
+int
+rsa_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
+{
+ RSA_secret_key sk;
+
+ if( algo != 1 && algo != 2 )
+ return G10ERR_PUBKEY_ALGO;
+
+ sk.n = skey[0];
+ sk.e = skey[1];
+ sk.d = skey[2];
+ sk.p = skey[3];
+ sk.q = skey[4];
+ sk.u = skey[5];
+ *result = mpi_alloc_secure( mpi_get_nlimbs( sk.n ) );
+ secret( *result, data[0], &sk );
+ return 0;
+}
+
+int
+rsa_sign( int algo, MPI *resarr, MPI data, MPI *skey )
+{
+ RSA_secret_key sk;
+
+ if( algo != 1 && algo != 3 )
+ return G10ERR_PUBKEY_ALGO;
+
+ sk.n = skey[0];
+ sk.e = skey[1];
+ sk.d = skey[2];
+ sk.p = skey[3];
+ sk.q = skey[4];
+ sk.u = skey[5];
+ resarr[0] = mpi_alloc( mpi_get_nlimbs( sk.n ) );
+ secret( resarr[0], data, &sk );
+
+ return 0;
+}
+
+int
+rsa_verify( int algo, MPI hash, MPI *data, MPI *pkey,
+ int (*cmp)(void *opaque, MPI tmp), void *opaquev )
+{
+ RSA_public_key pk;
+ MPI result;
+ int rc;
+
+ if( algo != 1 && algo != 3 )
+ return G10ERR_PUBKEY_ALGO;
+ pk.n = pkey[0];
+ pk.e = pkey[1];
+ result = mpi_alloc( (160+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB);
+ public( result, data[0], &pk );
+ /*rc = (*cmp)( opaquev, result );*/
+ rc = mpi_cmp( result, hash )? G10ERR_BAD_SIGN:0;
+ mpi_free(result);
+
+ return rc;
+}
+
+
+unsigned int
+rsa_get_nbits( int algo, MPI *pkey )
+{
+ if( !is_RSA(algo) )
+ return 0;
+ return mpi_get_nbits( pkey[0] );
+}
+
+
+/****************
+ * Return some information about the algorithm. We need algo here to
+ * distinguish different flavors of the algorithm.
+ * Returns: A pointer to string describing the algorithm or NULL if
+ * the ALGO is invalid.
+ * Usage: Bit 0 set : allows signing
+ * 1 set : allows encryption
+ */
+const char *
+rsa_get_info( int algo,
+ int *npkey, int *nskey, int *nenc, int *nsig, int *r_usage )
+{
+ *npkey = 2;
+ *nskey = 6;
+ *nenc = 1;
+ *nsig = 1;
+
+ switch( algo ) {
+ case 1: *r_usage = PUBKEY_USAGE_SIG | PUBKEY_USAGE_ENC; return "RSA";
+ case 2: *r_usage = PUBKEY_USAGE_ENC; return "RSA-E";
+ case 3: *r_usage = PUBKEY_USAGE_SIG; return "RSA-S";
+ default:*r_usage = 0; return NULL;
+ }
+}
+
+
+