diff options
Diffstat (limited to 'cipher/elgamal.c')
-rw-r--r-- | cipher/elgamal.c | 661 |
1 files changed, 0 insertions, 661 deletions
diff --git a/cipher/elgamal.c b/cipher/elgamal.c deleted file mode 100644 index c2c2c6e1a..000000000 --- a/cipher/elgamal.c +++ /dev/null @@ -1,661 +0,0 @@ -/* elgamal.c - ElGamal Public Key encryption - * Copyright (C) 1998, 2000 Free Software Foundation, Inc. - * - * For a description of the algorithm, see: - * Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996. - * ISBN 0-471-11709-9. Pages 476 ff. - * - * This file is part of GnuPG. - * - * GnuPG is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * GnuPG is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA - */ - -#include <config.h> -#include <stdio.h> -#include <stdlib.h> -#include <string.h> -#include "g10lib.h" -#include "mpi.h" -#include "cipher.h" -#include "elgamal.h" - -typedef struct { - MPI p; /* prime */ - MPI g; /* group generator */ - MPI y; /* g^x mod p */ -} ELG_public_key; - - -typedef struct { - MPI p; /* prime */ - MPI g; /* group generator */ - MPI y; /* g^x mod p */ - MPI x; /* secret exponent */ -} ELG_secret_key; - - -static void test_keys( ELG_secret_key *sk, unsigned nbits ); -static MPI gen_k( MPI p ); -static void generate( ELG_secret_key *sk, unsigned nbits, MPI **factors ); -static int check_secret_key( ELG_secret_key *sk ); -static void encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey ); -static void decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey ); -static void sign(MPI a, MPI b, MPI input, ELG_secret_key *skey); -static int verify(MPI a, MPI b, MPI input, ELG_public_key *pkey); - - -static void (*progress_cb) ( void *, int ); -static void *progress_cb_data; - -void -register_pk_elg_progress ( void (*cb)( void *, int), void *cb_data ) -{ - progress_cb = cb; - progress_cb_data = cb_data; -} - - -static void -progress( int c ) -{ - if ( progress_cb ) - progress_cb ( progress_cb_data, c ); - else - fputc( c, stderr ); -} - - -/**************** - * Michael Wiener's table on subgroup sizes to match field sizes - * (floating around somewhere - Fixme: need a reference) - */ -static unsigned int -wiener_map( unsigned int n ) -{ - static struct { unsigned int p_n, q_n; } t[] = - { /* p q attack cost */ - { 512, 119 }, /* 9 x 10^17 */ - { 768, 145 }, /* 6 x 10^21 */ - { 1024, 165 }, /* 7 x 10^24 */ - { 1280, 183 }, /* 3 x 10^27 */ - { 1536, 198 }, /* 7 x 10^29 */ - { 1792, 212 }, /* 9 x 10^31 */ - { 2048, 225 }, /* 8 x 10^33 */ - { 2304, 237 }, /* 5 x 10^35 */ - { 2560, 249 }, /* 3 x 10^37 */ - { 2816, 259 }, /* 1 x 10^39 */ - { 3072, 269 }, /* 3 x 10^40 */ - { 3328, 279 }, /* 8 x 10^41 */ - { 3584, 288 }, /* 2 x 10^43 */ - { 3840, 296 }, /* 4 x 10^44 */ - { 4096, 305 }, /* 7 x 10^45 */ - { 4352, 313 }, /* 1 x 10^47 */ - { 4608, 320 }, /* 2 x 10^48 */ - { 4864, 328 }, /* 2 x 10^49 */ - { 5120, 335 }, /* 3 x 10^50 */ - { 0, 0 } - }; - int i; - - for(i=0; t[i].p_n; i++ ) { - if( n <= t[i].p_n ) - return t[i].q_n; - } - /* not in table - use some arbitrary high number ;-) */ - return n / 8 + 200; -} - -static void -test_keys( ELG_secret_key *sk, unsigned nbits ) -{ - ELG_public_key pk; - MPI test = gcry_mpi_new ( 0 ); - MPI out1_a = gcry_mpi_new ( nbits ); - MPI out1_b = gcry_mpi_new ( nbits ); - MPI out2 = gcry_mpi_new ( nbits ); - - pk.p = sk->p; - pk.g = sk->g; - pk.y = sk->y; - - gcry_mpi_randomize( test, nbits, GCRY_WEAK_RANDOM ); - - encrypt( out1_a, out1_b, test, &pk ); - decrypt( out2, out1_a, out1_b, sk ); - if( mpi_cmp( test, out2 ) ) - log_fatal("ElGamal operation: encrypt, decrypt failed\n"); - - sign( out1_a, out1_b, test, sk ); - if( !verify( out1_a, out1_b, test, &pk ) ) - log_fatal("ElGamal operation: sign, verify failed\n"); - - gcry_mpi_release ( test ); - gcry_mpi_release ( out1_a ); - gcry_mpi_release ( out1_b ); - gcry_mpi_release ( out2 ); -} - - -/**************** - * generate a random secret exponent k from prime p, so - * that k is relatively prime to p-1 - */ -static MPI -gen_k( MPI p ) -{ - MPI k = mpi_alloc_secure( 0 ); - MPI temp = mpi_alloc( mpi_get_nlimbs(p) ); - MPI p_1 = mpi_copy(p); - unsigned int orig_nbits = mpi_get_nbits(p); - unsigned int nbits, nbytes; - char *rndbuf = NULL; - - /* IMO using a k much lesser than p is sufficient and it greatly - * improves the encryption performance. We use Wiener's table - * and add a large safety margin. - */ - nbits = wiener_map( orig_nbits ) * 3 / 2; - if( nbits >= orig_nbits ) - BUG(); - - nbytes = (nbits+7)/8; - if( DBG_CIPHER ) - log_debug("choosing a random k "); - mpi_sub_ui( p_1, p, 1); - for(;;) { - if( !rndbuf || nbits < 32 ) { - g10_free(rndbuf); - rndbuf = gcry_random_bytes_secure( nbytes, GCRY_STRONG_RANDOM ); - } - else { /* change only some of the higher bits */ - /* we could improve this by directly requesting more memory - * at the first call to get_random_bytes() and use this the here - * maybe it is easier to do this directly in random.c - * Anyway, it is highly inlikely that we will ever reach this code - */ - char *pp = gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM ); - memcpy( rndbuf, pp, 4 ); - g10_free(pp); - log_debug("gen_k: tsss, never expected to reach this\n"); - } - mpi_set_buffer( k, rndbuf, nbytes, 0 ); - - for(;;) { - /* Hmm, actually we don't need this step here - * because we use k much smaller than p - we do it anyway - * just in case the keep on adding a one to k ;) */ - if( !(mpi_cmp( k, p_1 ) < 0) ) { /* check: k < (p-1) */ - if( DBG_CIPHER ) - progress('+'); - break; /* no */ - } - if( !(mpi_cmp_ui( k, 0 ) > 0) ) { /* check: k > 0 */ - if( DBG_CIPHER ) - progress('-'); - break; /* no */ - } - if( mpi_gcd( temp, k, p_1 ) ) - goto found; /* okay, k is relatively prime to (p-1) */ - mpi_add_ui( k, k, 1 ); - if( DBG_CIPHER ) - progress('.'); - } - } - found: - g10_free(rndbuf); - if( DBG_CIPHER ) - progress('\n'); - mpi_free(p_1); - mpi_free(temp); - - return k; -} - -/**************** - * Generate a key pair with a key of size NBITS - * Returns: 2 structures filles with all needed values - * and an array with n-1 factors of (p-1) - */ -static void -generate( ELG_secret_key *sk, unsigned int nbits, MPI **ret_factors ) -{ - MPI p; /* the prime */ - MPI p_min1; - MPI g; - MPI x; /* the secret exponent */ - MPI y; - MPI temp; - unsigned int qbits; - unsigned int xbits; - byte *rndbuf; - - p_min1 = gcry_mpi_new ( nbits ); - temp = gcry_mpi_new( nbits ); - qbits = wiener_map( nbits ); - if( qbits & 1 ) /* better have a even one */ - qbits++; - g = mpi_alloc(1); - p = generate_elg_prime( 0, nbits, qbits, g, ret_factors ); - mpi_sub_ui(p_min1, p, 1); - - - /* select a random number which has these properties: - * 0 < x < p-1 - * This must be a very good random number because this is the - * secret part. The prime is public and may be shared anyway, - * so a random generator level of 1 is used for the prime. - * - * I don't see a reason to have a x of about the same size - * as the p. It should be sufficient to have one about the size - * of q or the later used k plus a large safety margin. Decryption - * will be much faster with such an x. - */ - xbits = qbits * 3 / 2; - if( xbits >= nbits ) - BUG(); - x = gcry_mpi_snew ( xbits ); - if( DBG_CIPHER ) - log_debug("choosing a random x of size %u", xbits ); - rndbuf = NULL; - do { - if( DBG_CIPHER ) - progress('.'); - if( rndbuf ) { /* change only some of the higher bits */ - if( xbits < 16 ) {/* should never happen ... */ - g10_free(rndbuf); - rndbuf = gcry_random_bytes_secure( (xbits+7)/8, - GCRY_VERY_STRONG_RANDOM ); - } - else { - char *r = gcry_random_bytes_secure( 2, - GCRY_VERY_STRONG_RANDOM ); - memcpy(rndbuf, r, 2 ); - g10_free(r); - } - } - else { - rndbuf = gcry_random_bytes_secure( (xbits+7)/8, - GCRY_VERY_STRONG_RANDOM ); - } - mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 ); - mpi_clear_highbit( x, xbits+1 ); - } while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) ); - g10_free(rndbuf); - - y = gcry_mpi_new (nbits); - gcry_mpi_powm( y, g, x, p ); - - if( DBG_CIPHER ) { - progress('\n'); - log_mpidump("elg p= ", p ); - log_mpidump("elg g= ", g ); - log_mpidump("elg y= ", y ); - log_mpidump("elg x= ", x ); - } - - /* copy the stuff to the key structures */ - sk->p = p; - sk->g = g; - sk->y = y; - sk->x = x; - - /* now we can test our keys (this should never fail!) */ - test_keys( sk, nbits - 64 ); - - gcry_mpi_release ( p_min1 ); - gcry_mpi_release ( temp ); -} - - -/**************** - * Test whether the secret key is valid. - * Returns: if this is a valid key. - */ -static int -check_secret_key( ELG_secret_key *sk ) -{ - int rc; - MPI y = mpi_alloc( mpi_get_nlimbs(sk->y) ); - - gcry_mpi_powm( y, sk->g, sk->x, sk->p ); - rc = !mpi_cmp( y, sk->y ); - mpi_free( y ); - return rc; -} - - -static void -encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey ) -{ - MPI k; - - /* Note: maybe we should change the interface, so that it - * is possible to check that input is < p and return an - * error code. - */ - - k = gen_k( pkey->p ); - gcry_mpi_powm( a, pkey->g, k, pkey->p ); - /* b = (y^k * input) mod p - * = ((y^k mod p) * (input mod p)) mod p - * and because input is < p - * = ((y^k mod p) * input) mod p - */ - gcry_mpi_powm( b, pkey->y, k, pkey->p ); - mpi_mulm( b, b, input, pkey->p ); - #if 0 - if( DBG_CIPHER ) { - log_mpidump("elg encrypted y= ", pkey->y); - log_mpidump("elg encrypted p= ", pkey->p); - log_mpidump("elg encrypted k= ", k); - log_mpidump("elg encrypted M= ", input); - log_mpidump("elg encrypted a= ", a); - log_mpidump("elg encrypted b= ", b); - } - #endif - mpi_free(k); -} - - - - -static void -decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey ) -{ - MPI t1 = mpi_alloc_secure( mpi_get_nlimbs( skey->p ) ); - - /* output = b/(a^x) mod p */ - gcry_mpi_powm( t1, a, skey->x, skey->p ); - mpi_invm( t1, t1, skey->p ); - mpi_mulm( output, b, t1, skey->p ); - #if 0 - if( DBG_CIPHER ) { - log_mpidump("elg decrypted x= ", skey->x); - log_mpidump("elg decrypted p= ", skey->p); - log_mpidump("elg decrypted a= ", a); - log_mpidump("elg decrypted b= ", b); - log_mpidump("elg decrypted M= ", output); - } - #endif - mpi_free(t1); -} - - -/**************** - * Make an Elgamal signature out of INPUT - */ - -static void -sign(MPI a, MPI b, MPI input, ELG_secret_key *skey ) -{ - MPI k; - MPI t = mpi_alloc( mpi_get_nlimbs(a) ); - MPI inv = mpi_alloc( mpi_get_nlimbs(a) ); - MPI p_1 = mpi_copy(skey->p); - - /* - * b = (t * inv) mod (p-1) - * b = (t * inv(k,(p-1),(p-1)) mod (p-1) - * b = (((M-x*a) mod (p-1)) * inv(k,(p-1),(p-1))) mod (p-1) - * - */ - mpi_sub_ui(p_1, p_1, 1); - k = gen_k( skey->p ); - gcry_mpi_powm( a, skey->g, k, skey->p ); - mpi_mul(t, skey->x, a ); - mpi_subm(t, input, t, p_1 ); - mpi_invm(inv, k, p_1 ); - mpi_mulm(b, t, inv, p_1 ); - - #if 0 - if( DBG_CIPHER ) { - log_mpidump("elg sign p= ", skey->p); - log_mpidump("elg sign g= ", skey->g); - log_mpidump("elg sign y= ", skey->y); - log_mpidump("elg sign x= ", skey->x); - log_mpidump("elg sign k= ", k); - log_mpidump("elg sign M= ", input); - log_mpidump("elg sign a= ", a); - log_mpidump("elg sign b= ", b); - } - #endif - mpi_free(k); - mpi_free(t); - mpi_free(inv); - mpi_free(p_1); -} - - -/**************** - * Returns true if the signature composed of A and B is valid. - */ -static int -verify(MPI a, MPI b, MPI input, ELG_public_key *pkey ) -{ - int rc; - MPI t1; - MPI t2; - MPI base[4]; - MPI exp[4]; - - if( !(mpi_cmp_ui( a, 0 ) > 0 && mpi_cmp( a, pkey->p ) < 0) ) - return 0; /* assertion 0 < a < p failed */ - - t1 = mpi_alloc( mpi_get_nlimbs(a) ); - t2 = mpi_alloc( mpi_get_nlimbs(a) ); - - #if 0 - /* t1 = (y^a mod p) * (a^b mod p) mod p */ - gcry_mpi_powm( t1, pkey->y, a, pkey->p ); - gcry_mpi_powm( t2, a, b, pkey->p ); - mpi_mulm( t1, t1, t2, pkey->p ); - - /* t2 = g ^ input mod p */ - gcry_mpi_powm( t2, pkey->g, input, pkey->p ); - - rc = !mpi_cmp( t1, t2 ); - #elif 0 - /* t1 = (y^a mod p) * (a^b mod p) mod p */ - base[0] = pkey->y; exp[0] = a; - base[1] = a; exp[1] = b; - base[2] = NULL; exp[2] = NULL; - mpi_mulpowm( t1, base, exp, pkey->p ); - - /* t2 = g ^ input mod p */ - gcry_mpi_powm( t2, pkey->g, input, pkey->p ); - - rc = !mpi_cmp( t1, t2 ); - #else - /* t1 = g ^ - input * y ^ a * a ^ b mod p */ - mpi_invm(t2, pkey->g, pkey->p ); - base[0] = t2 ; exp[0] = input; - base[1] = pkey->y; exp[1] = a; - base[2] = a; exp[2] = b; - base[3] = NULL; exp[3] = NULL; - mpi_mulpowm( t1, base, exp, pkey->p ); - rc = !mpi_cmp_ui( t1, 1 ); - - #endif - - mpi_free(t1); - mpi_free(t2); - return rc; -} - -/********************************************* - ************** interface ****************** - *********************************************/ - -int -elg_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors ) -{ - ELG_secret_key sk; - - if( !is_ELGAMAL(algo) ) - return GCRYERR_INV_PK_ALGO; - - generate( &sk, nbits, retfactors ); - skey[0] = sk.p; - skey[1] = sk.g; - skey[2] = sk.y; - skey[3] = sk.x; - return 0; -} - - -int -elg_check_secret_key( int algo, MPI *skey ) -{ - ELG_secret_key sk; - - if( !is_ELGAMAL(algo) ) - return GCRYERR_INV_PK_ALGO; - if( !skey[0] || !skey[1] || !skey[2] || !skey[3] ) - return GCRYERR_BAD_MPI; - - sk.p = skey[0]; - sk.g = skey[1]; - sk.y = skey[2]; - sk.x = skey[3]; - if( !check_secret_key( &sk ) ) - return GCRYERR_BAD_SECRET_KEY; - - return 0; -} - - - -int -elg_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey ) -{ - ELG_public_key pk; - - if( !is_ELGAMAL(algo) ) - return GCRYERR_INV_PK_ALGO; - if( !data || !pkey[0] || !pkey[1] || !pkey[2] ) - return GCRYERR_BAD_MPI; - - pk.p = pkey[0]; - pk.g = pkey[1]; - pk.y = pkey[2]; - resarr[0] = mpi_alloc( mpi_get_nlimbs( pk.p ) ); - resarr[1] = mpi_alloc( mpi_get_nlimbs( pk.p ) ); - encrypt( resarr[0], resarr[1], data, &pk ); - return 0; -} - -int -elg_decrypt( int algo, MPI *result, MPI *data, MPI *skey ) -{ - ELG_secret_key sk; - - if( !is_ELGAMAL(algo) ) - return GCRYERR_INV_PK_ALGO; - if( !data[0] || !data[1] - || !skey[0] || !skey[1] || !skey[2] || !skey[3] ) - return GCRYERR_BAD_MPI; - - sk.p = skey[0]; - sk.g = skey[1]; - sk.y = skey[2]; - sk.x = skey[3]; - *result = mpi_alloc_secure( mpi_get_nlimbs( sk.p ) ); - decrypt( *result, data[0], data[1], &sk ); - return 0; -} - -int -elg_sign( int algo, MPI *resarr, MPI data, MPI *skey ) -{ - ELG_secret_key sk; - - if( !is_ELGAMAL(algo) ) - return GCRYERR_INV_PK_ALGO; - if( !data || !skey[0] || !skey[1] || !skey[2] || !skey[3] ) - return GCRYERR_BAD_MPI; - - sk.p = skey[0]; - sk.g = skey[1]; - sk.y = skey[2]; - sk.x = skey[3]; - resarr[0] = mpi_alloc( mpi_get_nlimbs( sk.p ) ); - resarr[1] = mpi_alloc( mpi_get_nlimbs( sk.p ) ); - sign( resarr[0], resarr[1], data, &sk ); - return 0; -} - -int -elg_verify( int algo, MPI hash, MPI *data, MPI *pkey, - int (*cmp)(void *, MPI), void *opaquev ) -{ - ELG_public_key pk; - - if( !is_ELGAMAL(algo) ) - return GCRYERR_INV_PK_ALGO; - if( !data[0] || !data[1] || !hash - || !pkey[0] || !pkey[1] || !pkey[2] ) - return GCRYERR_BAD_MPI; - - pk.p = pkey[0]; - pk.g = pkey[1]; - pk.y = pkey[2]; - if( !verify( data[0], data[1], hash, &pk ) ) - return GCRYERR_BAD_SIGNATURE; - return 0; -} - - - -unsigned int -elg_get_nbits( int algo, MPI *pkey ) -{ - if( !is_ELGAMAL(algo) ) - return 0; - return mpi_get_nbits( pkey[0] ); -} - - -/**************** - * Return some information about the algorithm. We need algo here to - * distinguish different flavors of the algorithm. - * Returns: A pointer to string describing the algorithm or NULL if - * the ALGO is invalid. - * Usage: Bit 0 set : allows signing - * 1 set : allows encryption - * NOTE: This function allows signing also for ELG-E, which is not - * okay but a bad hack to allow to work with old gpg keys. The real check - * is done in the gnupg ocde depending on the packet version. - */ -const char * -elg_get_info( int algo, int *npkey, int *nskey, int *nenc, int *nsig, - int *use ) -{ - *npkey = 3; - *nskey = 4; - *nenc = 2; - *nsig = 2; - - switch( algo ) { - case GCRY_PK_ELG: - *use = GCRY_PK_USAGE_SIGN|GCRY_PK_USAGE_ENCR; - return "ELG"; - case GCRY_PK_ELG_E: - *use = GCRY_PK_USAGE_SIGN|GCRY_PK_USAGE_ENCR; - return "ELG-E"; - default: *use = 0; return NULL; - } -} - - |