aboutsummaryrefslogtreecommitdiffstats
path: root/cipher/rsa.c
diff options
context:
space:
mode:
authorRepo Admin <[email protected]>2002-10-19 07:55:27 +0000
committerRepo Admin <[email protected]>2002-10-19 07:55:27 +0000
commit82a17c9fb3d64ccdd474c3bedf564368f77e84a4 (patch)
tree0c01ee8cea5f6f77e830955c6b97024752740a2b /cipher/rsa.c
parentBumped version number for cvs version (diff)
downloadgnupg-82a17c9fb3d64ccdd474c3bedf564368f77e84a4.tar.gz
gnupg-82a17c9fb3d64ccdd474c3bedf564368f77e84a4.zip
This commit was manufactured by cvs2svn to create branch
'GNUPG-1-9-BRANCH'.
Diffstat (limited to 'cipher/rsa.c')
-rw-r--r--cipher/rsa.c494
1 files changed, 0 insertions, 494 deletions
diff --git a/cipher/rsa.c b/cipher/rsa.c
deleted file mode 100644
index e438b39cf..000000000
--- a/cipher/rsa.c
+++ /dev/null
@@ -1,494 +0,0 @@
-/* rsa.c - RSA function
- * Copyright (C) 1997, 1998, 1999 by Werner Koch (dd9jn)
- * Copyright (C) 2000, 2001 Free Software Foundation, Inc.
- *
- * This file is part of GnuPG.
- *
- * GnuPG is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * GnuPG is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
- */
-
-/* This code uses an algorithm protected by U.S. Patent #4,405,829
- which expires on September 20, 2000. The patent holder placed that
- patent into the public domain on Sep 6th, 2000.
-*/
-
-#include <config.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include "util.h"
-#include "mpi.h"
-#include "cipher.h"
-#include "rsa.h"
-
-
-typedef struct {
- MPI n; /* modulus */
- MPI e; /* exponent */
-} RSA_public_key;
-
-
-typedef struct {
- MPI n; /* public modulus */
- MPI e; /* public exponent */
- MPI d; /* exponent */
- MPI p; /* prime p. */
- MPI q; /* prime q. */
- MPI u; /* inverse of p mod q. */
-} RSA_secret_key;
-
-
-static void test_keys( RSA_secret_key *sk, unsigned nbits );
-static void generate( RSA_secret_key *sk, unsigned nbits );
-static int check_secret_key( RSA_secret_key *sk );
-static void public(MPI output, MPI input, RSA_public_key *skey );
-static void secret(MPI output, MPI input, RSA_secret_key *skey );
-
-
-static void
-test_keys( RSA_secret_key *sk, unsigned nbits )
-{
- RSA_public_key pk;
- MPI test = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
- MPI out1 = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
- MPI out2 = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
-
- pk.n = sk->n;
- pk.e = sk->e;
- { char *p = get_random_bits( nbits, 0, 0 );
- mpi_set_buffer( test, p, (nbits+7)/8, 0 );
- m_free(p);
- }
-
- public( out1, test, &pk );
- secret( out2, out1, sk );
- if( mpi_cmp( test, out2 ) )
- log_fatal("RSA operation: public, secret failed\n");
- secret( out1, test, sk );
- public( out2, out1, &pk );
- if( mpi_cmp( test, out2 ) )
- log_fatal("RSA operation: secret, public failed\n");
- mpi_free( test );
- mpi_free( out1 );
- mpi_free( out2 );
-}
-
-/****************
- * Generate a key pair with a key of size NBITS
- * Returns: 2 structures filled with all needed values
- */
-static void
-generate( RSA_secret_key *sk, unsigned nbits )
-{
- MPI p, q; /* the two primes */
- MPI d; /* the private key */
- MPI u;
- MPI t1, t2;
- MPI n; /* the public key */
- MPI e; /* the exponent */
- MPI phi; /* helper: (p-1)(q-1) */
- MPI g;
- MPI f;
-
- /* make sure that nbits is even so that we generate p, q of equal size */
- if ( (nbits&1) )
- nbits++;
-
- n = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
-
- p = q = NULL;
- do {
- /* select two (very secret) primes */
- if (p)
- mpi_free (p);
- if (q)
- mpi_free (q);
- p = generate_secret_prime( nbits / 2 );
- q = generate_secret_prime( nbits / 2 );
- if( mpi_cmp( p, q ) > 0 ) /* p shall be smaller than q (for calc of u)*/
- mpi_swap(p,q);
- /* calculate the modulus */
- mpi_mul( n, p, q );
- } while ( mpi_get_nbits(n) != nbits );
-
- /* calculate Euler totient: phi = (p-1)(q-1) */
- t1 = mpi_alloc_secure( mpi_get_nlimbs(p) );
- t2 = mpi_alloc_secure( mpi_get_nlimbs(p) );
- phi = mpi_alloc_secure( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
- g = mpi_alloc_secure( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
- f = mpi_alloc_secure( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
- mpi_sub_ui( t1, p, 1 );
- mpi_sub_ui( t2, q, 1 );
- mpi_mul( phi, t1, t2 );
- mpi_gcd(g, t1, t2);
- mpi_fdiv_q(f, phi, g);
-
- /* find an public exponent.
- We use 41 as this is quite fast and more secure than the
- commonly used 17. Benchmarking the RSA verify function
- with a 1024 bit key yields (2001-11-08):
- e=17 0.54 ms
- e=41 0.75 ms
- e=257 0.95 ms
- e=65537 1.80 ms
- */
- e = mpi_alloc( (32+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
- mpi_set_ui( e, 41);
- if( !mpi_gcd(t1, e, phi) ) {
- mpi_set_ui( e, 257);
- if( !mpi_gcd(t1, e, phi) ) {
- mpi_set_ui( e, 65537);
- while( !mpi_gcd(t1, e, phi) ) /* (while gcd is not 1) */
- mpi_add_ui( e, e, 2);
- }
- }
-
- /* calculate the secret key d = e^1 mod phi */
- d = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
- mpi_invm(d, e, f );
- /* calculate the inverse of p and q (used for chinese remainder theorem)*/
- u = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
- mpi_invm(u, p, q );
-
- if( DBG_CIPHER ) {
- log_mpidump(" p= ", p );
- log_mpidump(" q= ", q );
- log_mpidump("phi= ", phi );
- log_mpidump(" g= ", g );
- log_mpidump(" f= ", f );
- log_mpidump(" n= ", n );
- log_mpidump(" e= ", e );
- log_mpidump(" d= ", d );
- log_mpidump(" u= ", u );
- }
-
- mpi_free(t1);
- mpi_free(t2);
- mpi_free(phi);
- mpi_free(f);
- mpi_free(g);
-
- sk->n = n;
- sk->e = e;
- sk->p = p;
- sk->q = q;
- sk->d = d;
- sk->u = u;
-
- /* now we can test our keys (this should never fail!) */
- test_keys( sk, nbits - 64 );
-}
-
-
-/****************
- * Test wether the secret key is valid.
- * Returns: true if this is a valid key.
- */
-static int
-check_secret_key( RSA_secret_key *sk )
-{
- int rc;
- MPI temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 );
-
- mpi_mul(temp, sk->p, sk->q );
- rc = mpi_cmp( temp, sk->n );
- mpi_free(temp);
- return !rc;
-}
-
-
-
-/****************
- * Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
- *
- * c = m^e mod n
- *
- * Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
- */
-static void
-public(MPI output, MPI input, RSA_public_key *pkey )
-{
- if( output == input ) { /* powm doesn't like output and input the same */
- MPI x = mpi_alloc( mpi_get_nlimbs(input)*2 );
- mpi_powm( x, input, pkey->e, pkey->n );
- mpi_set(output, x);
- mpi_free(x);
- }
- else
- mpi_powm( output, input, pkey->e, pkey->n );
-}
-
-#if 0
-static void
-stronger_key_check ( RSA_secret_key *skey )
-{
- MPI t = mpi_alloc_secure ( 0 );
- MPI t1 = mpi_alloc_secure ( 0 );
- MPI t2 = mpi_alloc_secure ( 0 );
- MPI phi = mpi_alloc_secure ( 0 );
-
- /* check that n == p * q */
- mpi_mul( t, skey->p, skey->q);
- if (mpi_cmp( t, skey->n) )
- log_info ( "RSA Oops: n != p * q\n" );
-
- /* check that p is less than q */
- if( mpi_cmp( skey->p, skey->q ) > 0 )
- log_info ("RSA Oops: p >= q\n");
-
-
- /* check that e divides neither p-1 nor q-1 */
- mpi_sub_ui(t, skey->p, 1 );
- mpi_fdiv_r(t, t, skey->e );
- if ( !mpi_cmp_ui( t, 0) )
- log_info ( "RSA Oops: e divides p-1\n" );
- mpi_sub_ui(t, skey->q, 1 );
- mpi_fdiv_r(t, t, skey->e );
- if ( !mpi_cmp_ui( t, 0) )
- log_info ( "RSA Oops: e divides q-1\n" );
-
- /* check that d is correct */
- mpi_sub_ui( t1, skey->p, 1 );
- mpi_sub_ui( t2, skey->q, 1 );
- mpi_mul( phi, t1, t2 );
- mpi_gcd(t, t1, t2);
- mpi_fdiv_q(t, phi, t);
- mpi_invm(t, skey->e, t );
- if ( mpi_cmp(t, skey->d ) )
- log_info ( "RSA Oops: d is wrong\n");
-
- /* check for crrectness of u */
- mpi_invm(t, skey->p, skey->q );
- if ( mpi_cmp(t, skey->u ) )
- log_info ( "RSA Oops: u is wrong\n");
-
- log_info ( "RSA secret key check finished\n");
-
- mpi_free (t);
- mpi_free (t1);
- mpi_free (t2);
- mpi_free (phi);
-}
-#endif
-
-
-/****************
- * Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
- *
- * m = c^d mod n
- *
- * Or faster:
- *
- * m1 = c ^ (d mod (p-1)) mod p
- * m2 = c ^ (d mod (q-1)) mod q
- * h = u * (m2 - m1) mod q
- * m = m1 + h * p
- *
- * Where m is OUTPUT, c is INPUT and d,n,p,q,u are elements of SKEY.
- */
-static void
-secret(MPI output, MPI input, RSA_secret_key *skey )
-{
- #if 0
- mpi_powm( output, input, skey->d, skey->n );
- #else
- MPI m1 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
- MPI m2 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
- MPI h = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
-
- /* m1 = c ^ (d mod (p-1)) mod p */
- mpi_sub_ui( h, skey->p, 1 );
- mpi_fdiv_r( h, skey->d, h );
- mpi_powm( m1, input, h, skey->p );
- /* m2 = c ^ (d mod (q-1)) mod q */
- mpi_sub_ui( h, skey->q, 1 );
- mpi_fdiv_r( h, skey->d, h );
- mpi_powm( m2, input, h, skey->q );
- /* h = u * ( m2 - m1 ) mod q */
- mpi_sub( h, m2, m1 );
- if ( mpi_is_neg( h ) )
- mpi_add ( h, h, skey->q );
- mpi_mulm( h, skey->u, h, skey->q );
- /* m = m2 + h * p */
- mpi_mul ( h, h, skey->p );
- mpi_add ( output, m1, h );
- /* ready */
-
- mpi_free ( h );
- mpi_free ( m1 );
- mpi_free ( m2 );
- #endif
-}
-
-
-/*********************************************
- ************** interface ******************
- *********************************************/
-
-int
-rsa_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
-{
- RSA_secret_key sk;
-
- if( !is_RSA(algo) )
- return G10ERR_PUBKEY_ALGO;
-
- generate( &sk, nbits );
- skey[0] = sk.n;
- skey[1] = sk.e;
- skey[2] = sk.d;
- skey[3] = sk.p;
- skey[4] = sk.q;
- skey[5] = sk.u;
- /* make an empty list of factors */
- *retfactors = m_alloc_clear( 1 * sizeof **retfactors );
- return 0;
-}
-
-
-int
-rsa_check_secret_key( int algo, MPI *skey )
-{
- RSA_secret_key sk;
-
- if( !is_RSA(algo) )
- return G10ERR_PUBKEY_ALGO;
-
- sk.n = skey[0];
- sk.e = skey[1];
- sk.d = skey[2];
- sk.p = skey[3];
- sk.q = skey[4];
- sk.u = skey[5];
- if( !check_secret_key( &sk ) )
- return G10ERR_BAD_SECKEY;
-
- return 0;
-}
-
-
-
-int
-rsa_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
-{
- RSA_public_key pk;
-
- if( algo != 1 && algo != 2 )
- return G10ERR_PUBKEY_ALGO;
-
- pk.n = pkey[0];
- pk.e = pkey[1];
- resarr[0] = mpi_alloc( mpi_get_nlimbs( pk.n ) );
- public( resarr[0], data, &pk );
- return 0;
-}
-
-int
-rsa_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
-{
- RSA_secret_key sk;
-
- if( algo != 1 && algo != 2 )
- return G10ERR_PUBKEY_ALGO;
-
- sk.n = skey[0];
- sk.e = skey[1];
- sk.d = skey[2];
- sk.p = skey[3];
- sk.q = skey[4];
- sk.u = skey[5];
- *result = mpi_alloc_secure( mpi_get_nlimbs( sk.n ) );
- secret( *result, data[0], &sk );
- return 0;
-}
-
-int
-rsa_sign( int algo, MPI *resarr, MPI data, MPI *skey )
-{
- RSA_secret_key sk;
-
- if( algo != 1 && algo != 3 )
- return G10ERR_PUBKEY_ALGO;
-
- sk.n = skey[0];
- sk.e = skey[1];
- sk.d = skey[2];
- sk.p = skey[3];
- sk.q = skey[4];
- sk.u = skey[5];
- resarr[0] = mpi_alloc( mpi_get_nlimbs( sk.n ) );
- secret( resarr[0], data, &sk );
-
- return 0;
-}
-
-int
-rsa_verify( int algo, MPI hash, MPI *data, MPI *pkey,
- int (*cmp)(void *opaque, MPI tmp), void *opaquev )
-{
- RSA_public_key pk;
- MPI result;
- int rc;
-
- if( algo != 1 && algo != 3 )
- return G10ERR_PUBKEY_ALGO;
- pk.n = pkey[0];
- pk.e = pkey[1];
- result = mpi_alloc( (160+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB);
- public( result, data[0], &pk );
- /*rc = (*cmp)( opaquev, result );*/
- rc = mpi_cmp( result, hash )? G10ERR_BAD_SIGN:0;
- mpi_free(result);
-
- return rc;
-}
-
-
-unsigned int
-rsa_get_nbits( int algo, MPI *pkey )
-{
- if( !is_RSA(algo) )
- return 0;
- return mpi_get_nbits( pkey[0] );
-}
-
-
-/****************
- * Return some information about the algorithm. We need algo here to
- * distinguish different flavors of the algorithm.
- * Returns: A pointer to string describing the algorithm or NULL if
- * the ALGO is invalid.
- * Usage: Bit 0 set : allows signing
- * 1 set : allows encryption
- */
-const char *
-rsa_get_info( int algo,
- int *npkey, int *nskey, int *nenc, int *nsig, int *r_usage )
-{
- *npkey = 2;
- *nskey = 6;
- *nenc = 1;
- *nsig = 1;
-
- switch( algo ) {
- case 1: *r_usage = PUBKEY_USAGE_SIG | PUBKEY_USAGE_ENC; return "RSA";
- case 2: *r_usage = PUBKEY_USAGE_ENC; return "RSA-E";
- case 3: *r_usage = PUBKEY_USAGE_SIG; return "RSA-S";
- default:*r_usage = 0; return NULL;
- }
-}
-
-
-