\chapter{Basics} % ============================================================================ \section{Reference counting} \subsection{Introduction} % -------------------------------------------------- Since version 0.7.2cvs, VMime use smart pointers to simplify memory management. VMime's smart pointer implementation relies on RAII\footnote{Ressource Allocation is Initialisation} so that we do not need to bother with deleting an object (freeing memory) when it is not used anymore. There are two possibilities for owning a reference to an object. We can own a strong reference to an object: as long as we keep this reference, the object is not destroyed. Or we can own a weak reference to the object: the object can be destroyed if nobody owns a strong reference to it, in which case the weak reference becomes invalid. An object is destroyed as soon as the last strong reference to it is released. At the same tine, all weak references (if any) are automatically set to point to \vnull. In VMime, these two types of references are known as {\vcode vmime::ref} and {\vcode vmime::weak\_ref}, respectively. \subsection{Instanciating reference-counted objects} % ----------------------- In VMime, all objects that support reference counting inherit from the {\vcode vmime::object} class, which is responsible for incrementing/decrementing the counter and managing the object's life cycle. If you want to create a smart pointer to a new object instance, you should use the function {\vcode vmime::create} instead of the {\vcode new} operator. \begin{lstlisting}[caption={Smarts pointers and creating objects}] class myObject : public vmime::object { public: myObject(const vmime::string& name) : m_name(name) { } void sayHello() { std::cout << "Hello " << m_name << std::endl; } private: vmime::string m_name; }; int main() { vmime::ref obj = vmime::create ("world"); obj->sayHello(); return 0; } // Here, 'obj' gets automatically destroyed \end{lstlisting} \subsection{Using smart pointers} % ------------------------------------------ Smart pointers are copiable, assignable and comparable. You can use them like you would use normal ("raw") C++ pointers (eg. you can write \lstinline{!ptr, ptr != NULL, ptr->method(), *ptr}...). Type safety is also guaranteed, and you can type cast smart pointers using the {\vcode staticCast()}, {\vcode dynamicCast()} and {\vcode constCast()} equivalents on {\vcode mime::ref} and {\vcode vmime::weak\_ref} objects: \begin{lstlisting}[caption={Casting smart pointers}] class myBase : public vmime::object { } class myObject : public myBase { } vmime::ref obj = vmime::create (); // Implicit downcast vmime::ref base = obj; // Explicit upcast vmime::ref obj2 = base.dynamicCast (); \end{lstlisting} Weak references are used to resolve reference cycles (an object which refers directly or indirectly to itself). The following example illustrates a typical problem of reference counting: \begin{lstlisting} class parent : public vmime::object { public: void createChild(vmime::ref c) { m_child = c; } private: vmime::ref m_child; }; class child : public vmime::object { public: child(vmime::ref p) : m_parent(p) { } private: vmime::ref m_parent; }; int main() { vmime::ref p = vmime::create (); vmime::ref c = vmime::create (); p->setChild(c); } \end{lstlisting} In this example, neither {\vcode p} nor {\vcode c} will be deleted when exiting {\vcode main()}. That's because {\vcode p} indirectly points to itself {\em via} {\vcode c}, and {\em vice versa}. The solution is to use a weak reference to the parent: \begin{lstlisting} vmime::weak_ref m_parent; \end{lstlisting} The decision to make the parent or the child a weak reference is purely semantic, and it depends on the context and the relationships between the objects. Note that when the parent is deleted, the {\vcode m\_parent} member of the child points to \vnull. More information about reference counting can be found on Wikipedia\footnote{http://en.wikipedia.org/wiki/Reference\_counting}. % ============================================================================ \section{Error handling} In VMime, error handling is exclusively based on exceptions, there is no error codes, or things like that. VMime code may throw exceptions in many different situations: an unexpected error occured, an operation is not supported, etc. You should catch them if you want to report failures to the user. This is also useful when debugging your program. VMime exceptions support chaining: an exception can be encapsulated into another exception to hide implementation details. The function {\vcode exception::other()} returns the next exception in the chain, or \vnull. Following is an example code for catching VMime exceptions and writing error messages to the console: \begin{lstlisting}[caption={Catching VMime exceptions}] std::ostream& operator<<(std::ostream& os, const vmime::exception& e) { os << "* vmime::exceptions::" << e.name() << std::endl; os << " what = " << e.what() << std::endl; // Recursively print all encapsuled exceptions if (e.other() != NULL) os << *e.other(); return os; } ... try { // ...some call to VMime... } catch (vmime::exception& e) { std::cerr << e; // VMime exception } catch (std::exception& e) { std::cerr << e.what(); // standard exception } \end{lstlisting} Read the source of {\vexample example6} if yo want to see a more complete example of using VMime exceptions (such as getting more detailed information by using specialized classes of {\vcode vmime::exception}). % ============================================================================ \section{Basic objects} \subsection{The {\vcode component} class} % ---------------------------------- In VMime, all the components of a message inherit from the same class {\vcode component}. This includes the message itself (classes {\vcode message} and {\vcode bodyPart}), the header, the header fields and the value of each header field, the body and all the parts in the message. The class component provide a common interface for parsing or generating all these components (methods {\vcode parse()} and {\vcode generate()}). It also provides additional functions to get some information about the parsing process or the structure (methods {\vcode getParsedOffset()}, {\vcode getParsedLength()} and {\vcode getChildComponents()}). Vmime also provides a set of classes corresponding to the basic types found in a message; for example a mailbox, a mailbox list, date/time information, media type, etc. They all inherit from {\vcode component} too. \subsection{Date and time} % ------------------------------------------------- Date and time are used in several places in VMime, particularly in header fields (Date, Received, ...). VMime fully supports RFC-2822's date and time specification. The object {\vcode vmime::datetime} is used to manipulate date and time information, and to parse/generate it from/to RFC-2822 format. The following code snippet show various manners of using the {\vcode vmime::datetime} object: \begin{lstlisting}[caption={Using {\vcode vmime::datetime} object}] // Creating from string in RFC-2822 format vmime::datetime d1("Sat, 08 Oct 2005 14:07:52 +0200"); // Creating from components vmime::datetime d2( /* date */ 2005, vmime::datetime::OCTOBER, 8, /* time */ 14, 7, 52, /* zone */ vmime::datetime::GMT2); // Getting day of week const int dow = d2.getWeekDay(); // 'dow' should be datetime::SATURDAY \end{lstlisting} \subsection{Media type} % ---------------------------------------------------- In MIME, the nature of the data contained in parts is identified using a media type. A general type (eg. \emph{image}) and a sub-type (eg. \emph{jpeg}) are put together to form a media type (eg. \emph{image/jpeg}). This is also called the MIME type. There are a lot of media types officially registered, and vendor-specific types are possible (they start with ``x-'', eg. \emph{application/x-zip-compressed}). In VMime, the object {\vcode vmime::mediaType} represents a media type. There are also some constants for top-level types and sub-types in the {\vcode vmime::mediaTypes} namespace. For example, you can instanciate a new media type with: \begin{lstlisting} vmime::mediaType theType( /* top-level type */ vmime::mediaTypes::IMAGE, /* sub-type */ vmime::mediaTypes::IMAGE_JPEG); // theType.getType() is "image" // theType.getSubType() is "jpeg" // theType.generate() returns "image/jpeg" \end{lstlisting} For more information about media types, see RFC-2046\footnote{http://www.faqs.org/rfcs/rfc2046.html}. \subsection{Mailbox and mailbox groups} % ------------------------------------ VMime provides several objects for working with mailboxes and addresses. The {\vcode vmime::address} class is an abstract type for representing an address: it can be either a mailbox (type {\vcode vmime::mailbox}) or a mailbox group (type {\vcode vmime::mailboxGroup}). A mailbox is composed of an email address (mandatory) and possibly a name. A mailbox group is simply a named list of mailboxes (see Figure \ref{uml_addr_mbox_mboxgroup}). \begin{lstlisting}[caption={Using mailboxes and mailbox groups}] vmime::ref mbox1 = vmime::create (/* name */ vmime::text("John Doe"), /* email */ "john.doe@acme.com"); vmime::ref mbox2 = vmime::create (/* no name, email only */ "bill@acme.com"); vmime::ref grp = vmime::create (); grp->appendMailbox(mbox1); grp->appendMailbox(mbox2); \end{lstlisting} \begin{figure}[ht!] \center\includegraphics[width=0.7\textwidth] {images/address-mailbox-mailboxgroup.png} \caption{Diagram for address-related classes} \label{uml_addr_mbox_mboxgroup} \end{figure} % ============================================================================ \section{Message, body parts and header} \subsection{Introduction to MIME messages} % --------------------------------- A MIME message is a recursive structure in which each part can contains one or more parts (or \emph{entities}). Each part is composed of a header and a body (actual contents). Figure \ref{uml_msg_body_header} shows how this model is implemented in VMime, and all classes that take part in it. \begin{figure} \center\includegraphics[width=1.0\textwidth] {images/message-body-header.png} \caption{Overall structure of MIME messages} \label{uml_msg_body_header} \end{figure} \subsection{Header and header fields} % -------------------------------------- \subsubsection{Standard header fields} % ..................................... Header fields carry information about a message (or a part) and its contents. Each header field has a name and a value. All types that can be used as a field value inherit from the {\vcode headerFieldValue} class. You cannot instanciate header fields directly using their constructor. Instead, you should use the {\vcode headerFieldFactory} object. This ensures the right field type and value type is used for the specified field name. For more information about how to use header fields and the factory, see section \ref{msg-building-simple-message}. Some standard fields are officially registered and have their value type specified in a RFC. Table \ref{standard-fields} lists all the fields registered by default in VMime and the value type they contains. By default, all unregistered fields have a value of type {\vcode text}. \begin{table}[!ht] \begin{center} \noindent\begin{tabularx}{0.85\textwidth}{|X|X|} \hline {\bf Field Name} & {\bf Value Type} \\ \hline \hline From & mailbox \\ To & addressList \\ Cc & addressList \\ Bcc & addressList \\ Sender & mailbox \\ Date & datetime \\ Received & relay \\ Subject & text \\ Reply-To & mailbox \\ Delivered-To & mailbox \\ Organization & text \\ Return-Path & path \\ Mime-Version & text \\ Content-Type & mediaType \\ Content-Transfer-Encoding & encoding \\ Content-Description & text \\ Content-Disposition & contentDisposition \\ Content-Id & messageId \\ Content-Location & text \\ Message-Id & messageId \\ In-Reply-To & messageIdSequence \\ References & messageIdSequence \\ Original-Message-Id & messageId \\ Disposition & disposition \\ Disposition-Notification-To & mailboxList \\ \hline \end{tabularx} \end{center} \label{standard-fields} \caption{Standard fields and their types} \end{table} \subsubsection{Parameterized fields} % ....................................... In addition to a value, some header fields can contain one or more \emph{name=value} couples which are called \emph{parameters}. For example, this is used in the \emph{Content-Type} field to give more information about the content: \begin{verbatim} Content-Type: text/plain; charset="utf-8" \end{verbatim} Fields that support parameters inherit from the {\vcode parameterizedHeaderField} class which provides methods to deal with these parameters: {\vcode appendParameter()}, {\vcode getParameterAt()}... A parameter is identified by a name (eg. \emph{charset}) and associated to a value of type {\vcode vmime::text}. Parameters provide helper functions to convert automatically from basic types to text, and \emph{vice versa}. The following example illustrates it: \begin{lstlisting}[caption={Getting and setting parameter value in fields}] vmime::ref field = header->findField("X-Field-That-Contains-Parameters") .dynamicCast (); // Use setValue() to convert from a basic type to 'text' vmime::ref prm = field->getParameter("my-date-param"); prm->setValue(vmime::datetime::now()); // Use getValueAs() to convert from 'text' to a basic type prm = field->getParameter("my-charset-param"); const vmime::charset ch = prm->getValueAs (); \end{lstlisting} Some fields provide easy access to their standard parameters (see Table \ref{standard-prm-fields}). This avoids finding the parameter and \emph{dynamic-casting} its value to the right type. The following code illustrates how to use it: \begin{lstlisting} vmime::ref field = header->getField(vmime::fields::CONTENT_TYPE) .dynamicCast (); // 1. First solution: the "hard" way vmime::ref prm = field->findParameter("charset"); const charset ch1 = prm->getValueAs (); // 2. Second solution: the simple way const charset ch2 = field->getCharset(); \end{lstlisting} \vnote{In both cases, an exception {\vcode no\_such\_parameter} can be thrown if the parameter does not exist, so be sure to catch it.} \begin{table}[ht!] \begin{center} \noindent\begin{tabularx}{0.85\textwidth}{|l|l|X|} \hline {\bf Field Name} & {\bf Field Type} & {\bf Parameters} \\ \hline \hline Content-Type & contentTypeField & boundary, charset, report-type \\ \hline Content-Disposition & contentDispositionField & creation-date, modification-date, read-date, filename, size \\ \hline \end{tabularx} \end{center} \label{standard-prm-fields} \caption{Standard parameterized fields} \end{table} % ============================================================================ \section{Streams} \subsection{Streams and stream adapters} % ----------------------------------- Streams permit reading or writing data whatever the underlying system is: a file on a hard disk, a socket connected to a remote service... There are two types of streams: input streams (from which you can read data) and output streams (in which you can write data). Some adapters are provided for compatibility and convenience, for example: \begin{itemize} \item {\vcode inputStreamAdapter} and {\vcode outputStreamAdapter}: allow to use standard C++ iostreams with VMime; \item {\vcode inputStreamStringAdapter} and {\vcode outputStreamStringAdapter}: use a {\vcode vmime::string} object to read/write data. \end{itemize} The following example shows two ways of writing the current date to the standard output, using stream adapters: \begin{lstlisting}[caption={Using stream adapters}] // Get current date and time const vmime::datetime date = vmime::datetime::now(); // 1. Using outputStreamAdapter vmime::utility::outputStreamAdapter out(std::cout); std::cout << "Current date is: "; date.generate(out); std::cout << std::endl; // 2. Using outputStreamStringAdapter vmime::string dateStr; vmime::utility::outputStreamStringAdapter outStr(dateStr); std::cout << "Current date is: " << dateStr << std::endl; \end{lstlisting} \subsection{Stream filters} % ------------------------------------------------ Input and output streams can be filtered to perform inline conversions (for example, there is a filter to convert ``{\textbackslash}r{\textbackslash}n'' sequences to ``{\textbackslash}n''). They inherit from {\vcode vmime::utility::filteredInputStream} or {\vcode vmime::utility::filteredOutputStream} and are used like adapters (some filters also accept parameters; read the documentation). The most useful filter in VMime (and probably the only one you will need) is the {\vcode charsetFilteredOutputStream}, which performs inline conversion of charsets. See \ref{section_charsets} to know how to use it. \vnote{After you have finished to use a filtered output stream, it is important to call {\vcode flush()} on it to flush the internal buffer. If {\vcode flush()} is not called, not all data may be written to the underlying stream.} % ============================================================================ \section{Content handlers} \subsection{Introduction} % -------------------------------------------------- Content handlers are an abstraction for data sources. They are currently used when some data need to be stored for later use (eg. body part contents, attachment data, ...). Data can be stored encoded or unencoded (for more information about encodings, see \ref{section_encodings}). \subsection{Extracting data from content handlers} % ------------------------- You can extract data in a content handler using the {\vcode extract()} method (which automatically decodes data if encoded) or {\vcode extractRaw()} (which extracts data without perfoming any decoding). The following example shows how to extract the body text from a message, and writing it to the standard output with charset conversion: \begin{lstlisting}[caption={Using content handlers to extract body text from a message}] // Suppose we already have a message vmime::ref msg; // Obtains a reference to the body contents vmime::ref body = msg->getBody(); vmime::ref cts = body->getContents(); vmime::utility::outputStreamAdapter out(std::cout); cts->extract(out); \end{lstlisting} \vnote{The body contents is extracted ``as is''. No charset conversion is performed. See \ref{section_charsets} to know more about conversion between charsets.} \subsection{Creating content handlers} % ------------------------------------- When you are building a message, you may need to instanciate content handlers if you want to set the contents of a body part. The following code snippet shows how to set the body text of a part from a string: \begin{lstlisting}[caption={Setting the contents of a body part}] vmime::ref part; // suppose we have a body part // Create a new content handler from a string vmime::ref cth = vmime::create ("Put body contents here"); // Set the contents part->getBody()->setContents(cth); \end{lstlisting} Content handlers are also used when creating attachments. The following example illustrates how to create an attachment from a file: \begin{lstlisting}[caption={Creating an attachment from a file}] // Create a stream from a file std::ifstream* fileStream = new std::ifstream(); fileStream->open("/home/vincent/paris.jpg", std::ios::binary); if (!*fileStream) // handle error vmime::ref dataStream = vmime::create (fileStream); // NOTE: 'fileStream' will be automatically deleted // when 'dataStream' is deleted // Create a new content handler vmime::ref data = vmime::create (dataStream, 0); // Now create the attachment ref att = vmime::create ( /* attachment data */ data, /* content type */ vmime::mediaType("image/jpeg"), /* description */ vmime::text("Holiday photo"), /* filename */ vmime::word("paris.jpg") ); \end{lstlisting} You will see later that the {\vcode vmime::fileAttachment} class already encapsulates all the mechanics to create an attachment from a file. % ============================================================================ \section{Character sets, charsets and conversions\label{section_charsets}} Quoting from RFC-2278: \emph{`` The term 'charset' is used to refer to a method of converting a sequence of octets into a sequence of characters.''} With the {\vcode vmime::charset} object, VMime supports conversion between charsets using the {\em iconv} library, which is available on almost all existing platforms. See {\vcode vmime::charset} and {\vcode vmime::charsetConverter} in the class documentation to know more about charset conversion. The following example shows how to convert data in one charset to another charset. The data is extracted from the body of a message and converted to UTF-8 charset: \begin{lstlisting}[caption={Extracting and converting body contents to a specified charset}] vmime::ref msg; // we have a message // Obtain the content handler first vmime::ref body = msg->getBody(); vmime::ref cth = body->getContents(); // Then, extract and convert the contents vmime::utility::outputStreamAdapter out(std::cout); vmime::utility::charsetFilteredOutputStream fout (/* source charset */ body->getCharset(), /* dest charset */ vmime::charset("utf-8"), /* dest stream */ out); cth->extract(fout); fout.flush(); // Very important! \end{lstlisting} % ============================================================================ \section{Non-ASCII text in header fields} MIME standard defines methods\footnote{See RFC-2047: Message Header Extensions for Non-ASCII Text} for dealing with data which is not 7-bit only (ie. the ASCII character set), in particular in header fields. For example, the field ``Subject:'' use this data type. VMime is fully compatible with RFC-2047 and provides two objects for manipulating 8-bit data: {\vcode vmime::text} and {\vcode vmime::word}. A word represents textual information encoded in a specified charset. A text is composed of one or more words. RFC-2047 describes the process of encoding 8-bit data into a 7-bit form; basically, it relies on Base64 and Quoted-Printable encoding. Hopefully, all the encoding/decoding process is done internally by VMime, so creating text objects is fairly simple: \begin{lstlisting}[caption={Creating \vcode{vmime::text} objects}] vmime::string inText = "Linux dans un téléphone mobile"; vmime::charset inCharset = "utf-8"; vmime::text outText; vmime::newFromString(inText, inCharset, &outText); // 'outText' now contains 3 words: // . "Linux dans un " // . "téléphone " // . "mobile" vmime::ref header = myMessage->getHeader(); header->Subject()->setValue(outText); \end{lstlisting} In general, you will not need to decode RFC-2047-encoded data as the process is totally transparent in VMime. If you really have to, you can use the {\vcode vmime::text::decodeAndUnfold()} static method to create a text object from encoded data. For example, say you have the following encoded data: \begin{verbatim} Linux dans un =?UTF-8?B?dMOpbMOpcGhvbmUgbW9iaWxl?= \end{verbatim} You can simply decode it using the following code: \begin{lstlisting}[caption={Decoding RFC-2047-encoded data}] vmime::string inData = "Linux dans un =?UTF-8?B?dMOpbMOpcGhvbmUgbW9iaWxl?="; vmime::text outText; vmime::text::decodeAndUnfold(inData, &outText); \end{lstlisting} {\vcode vmime::text} also provides a function to convert all the words to another charset in a single call. The following example shows how to convert text stored in the Subject field of a message: \begin{lstlisting}[caption={Converting data in a {\vcode vmime::text} to a specified charset}] vmime::ref msg; // we have a message vmime::text subject = msg->getHeader()->Subject()->getValue(); const vmime::string subjectText = subject.getConvertedText(vmime::charset("utf-8")); // 'subjectText' now contains the subject in UTF-8 encoding \end{lstlisting} % ============================================================================ \section{Encodings\label{section_encodings}} \subsection{Introduction} % -------------------------------------------------- The MIME standard defines a certain number of encodings to allow data to be safely transmitted from one peer to another. VMime provides data encoding and decoding using the {\vcode vmime::encoder} object. You should not need to use encoders directly, as all encoding/decoding process is handled internally by the library, but it is good to know they exist and how they work. \subsection{Using encoders} % ------------------------------------------------ You can create an instance of an encoder using the 'vmime::encoderFactory' object, giving the encoding name ({\it base64}, {\it quoted-printable}, ...). The following example creates an instance of the Base64 encoder to encode some data: \begin{lstlisting}[caption={A simple example of using an encoder}] vmime::ref enc = vmime::encoderFactory::getInstance()->create("base64"); vmime::string inString("Some data to encode"); vmime::utility::inputStreamStringAdapter in(inString); vmime::string outString; vmime::utility::outputStreamStringAdapter out(outString); enc->encode(in, out); std::cout << "Encoded data is:" << outString << std::endl; \end{lstlisting} \subsection{Enumerating available encoders} % -------------------------------- The behaviour of the encoders can be configured using properties. However, not all encoders support properties. The following example\footnote{This is an excerpt from {\vexample example6}} enumerates available encoders and the supported properties for each of them: \begin{lstlisting}[caption={Enumerating encoders and their properties}] vmime::encoderFactory* ef = vmime::encoderFactory::getInstance(); std::cout << "Available encoders:" << std::endl; for (int i = 0 ; i < ef->getEncoderCount() ; ++i) { // Output encoder name vmime::ref enc = ef->getEncoderAt(i); std::cout << " * " << enc->getName() << std::endl; // Create an instance of the encoder to get its properties vmime::ref e = enc->create(); std::vector props = e->getAvailableProperties(); std::vector ::const_iterator it; for (it = props.begin() ; it != props.end() ; ++it) std::cout << " - " << *it << std::endl; \end{lstlisting} % ============================================================================ \section{Progress listeners} Progress listeners are used with objects that can notify you about the state of progress when they are performing an operation. The {\vcode vmime::utility::progressListener} interface is rather simple: \begin{lstlisting} const bool cancel() const; void start(const int predictedTotal); void progress(const int current, const int currentTotal); void stop(const int total); \end{lstlisting} {\vcode start()} and {\vcode stop()} are called at the beginning and the end of the operation, respectively. {\vcode progress()} is called each time the status of progress changes (eg. a chunk of data has been processed). There is no unit specified for the values passed in argument. It depends on the notifier: it can be bytes, percent, number of messages... Your listener can return {\vcode} in the {\vcode cancel()} method to cancel the operation. However, be warned that cancelling is not always supported by the source object.