
* configure.ac: Changed gpg and gpgsm version checks to work with arbitrary names of the gpg binary. New option --disable-gpg-test and --disable-gpgsm-test. gpgme/ * w32-io.c (build_commandline): Fixed stupid quoting bug. * w32-glib-io.c (build_commandline): Ditto. * rungpg.c (gpg_set_locale): Avoid dangling pointer after free. * gpgme-config.in: New options --get-gpg and --get-gpgsm.
1153 lines
33 KiB
C
1153 lines
33 KiB
C
/* w32-io.c - W32 API I/O functions.
|
||
Copyright (C) 2000 Werner Koch (dd9jn)
|
||
Copyright (C) 2001, 2002, 2003, 2004 g10 Code GmbH
|
||
|
||
This file is part of GPGME.
|
||
|
||
GPGME is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU Lesser General Public License as
|
||
published by the Free Software Foundation; either version 2.1 of
|
||
the License, or (at your option) any later version.
|
||
|
||
GPGME is distributed in the hope that it will be useful, but
|
||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Lesser General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
#include <config.h>
|
||
#endif
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <assert.h>
|
||
#include <errno.h>
|
||
#include <signal.h>
|
||
#include <fcntl.h>
|
||
#include <sys/time.h>
|
||
#include <sys/types.h>
|
||
#include <windows.h>
|
||
#include <io.h>
|
||
|
||
#include "util.h"
|
||
#include "sema.h"
|
||
#include "priv-io.h"
|
||
#include "debug.h"
|
||
|
||
/* We assume that a HANDLE can be represented by an int which should
|
||
be true for all i386 systems (HANDLE is defined as void *) and
|
||
these are the only systems for which Windows is available. Further
|
||
we assume that -1 denotes an invalid handle. */
|
||
|
||
#define fd_to_handle(a) ((HANDLE)(a))
|
||
#define handle_to_fd(a) ((int)(a))
|
||
#define pid_to_handle(a) ((HANDLE)(a))
|
||
#define handle_to_pid(a) ((int)(a))
|
||
|
||
#define READBUF_SIZE 4096
|
||
#define WRITEBUF_SIZE 4096
|
||
#define PIPEBUF_SIZE 4096
|
||
#define MAX_READERS 20
|
||
#define MAX_WRITERS 20
|
||
|
||
static struct {
|
||
int inuse;
|
||
int fd;
|
||
void (*handler)(int,void*);
|
||
void *value;
|
||
} notify_table[256];
|
||
DEFINE_STATIC_LOCK (notify_table_lock);
|
||
|
||
|
||
struct reader_context_s {
|
||
HANDLE file_hd;
|
||
HANDLE thread_hd;
|
||
DECLARE_LOCK (mutex);
|
||
|
||
int stop_me;
|
||
int eof;
|
||
int eof_shortcut;
|
||
int error;
|
||
int error_code;
|
||
|
||
HANDLE have_data_ev; /* manually reset */
|
||
HANDLE have_space_ev; /* auto reset */
|
||
HANDLE stopped;
|
||
size_t readpos, writepos;
|
||
char buffer[READBUF_SIZE];
|
||
};
|
||
|
||
|
||
static struct {
|
||
volatile int used;
|
||
int fd;
|
||
struct reader_context_s *context;
|
||
} reader_table[MAX_READERS];
|
||
static int reader_table_size= MAX_READERS;
|
||
DEFINE_STATIC_LOCK (reader_table_lock);
|
||
|
||
|
||
struct writer_context_s {
|
||
HANDLE file_hd;
|
||
HANDLE thread_hd;
|
||
DECLARE_LOCK (mutex);
|
||
|
||
int stop_me;
|
||
int error;
|
||
int error_code;
|
||
|
||
HANDLE have_data; /* manually reset */
|
||
HANDLE is_empty;
|
||
HANDLE stopped;
|
||
size_t nbytes;
|
||
char buffer[WRITEBUF_SIZE];
|
||
};
|
||
|
||
|
||
static struct {
|
||
volatile int used;
|
||
int fd;
|
||
struct writer_context_s *context;
|
||
} writer_table[MAX_WRITERS];
|
||
static int writer_table_size= MAX_WRITERS;
|
||
DEFINE_STATIC_LOCK (writer_table_lock);
|
||
|
||
|
||
|
||
static int
|
||
get_desired_thread_priority (void)
|
||
{
|
||
int value;
|
||
|
||
if (!_gpgme_get_conf_int ("IOThreadPriority", &value))
|
||
{
|
||
value = THREAD_PRIORITY_HIGHEST;
|
||
DEBUG1 ("** Using standard IOThreadPriority of %d\n", value);
|
||
}
|
||
else
|
||
DEBUG1 ("** Configured IOThreadPriority is %d\n", value);
|
||
|
||
return value;
|
||
}
|
||
|
||
|
||
static HANDLE
|
||
set_synchronize (HANDLE h)
|
||
{
|
||
HANDLE tmp;
|
||
|
||
/* For NT we have to set the sync flag. It seems that the only
|
||
* way to do it is by duplicating the handle. Tsss.. */
|
||
if (!DuplicateHandle( GetCurrentProcess(), h,
|
||
GetCurrentProcess(), &tmp,
|
||
EVENT_MODIFY_STATE|SYNCHRONIZE, FALSE, 0 ) ) {
|
||
DEBUG1 ("** Set SYNCRONIZE failed: ec=%d\n", (int)GetLastError());
|
||
}
|
||
else {
|
||
CloseHandle (h);
|
||
h = tmp;
|
||
}
|
||
return h;
|
||
}
|
||
|
||
|
||
|
||
static DWORD CALLBACK
|
||
reader (void *arg)
|
||
{
|
||
struct reader_context_s *c = arg;
|
||
int nbytes;
|
||
DWORD nread;
|
||
|
||
DEBUG2 ("reader thread %p for file %p started", c->thread_hd, c->file_hd );
|
||
for (;;) {
|
||
LOCK (c->mutex);
|
||
/* leave a 1 byte gap so that we can see whether it is empty or full*/
|
||
if ((c->writepos + 1) % READBUF_SIZE == c->readpos) {
|
||
/* wait for space */
|
||
if (!ResetEvent (c->have_space_ev) )
|
||
DEBUG1 ("ResetEvent failed: ec=%d", (int)GetLastError ());
|
||
UNLOCK (c->mutex);
|
||
DEBUG1 ("reader thread %p: waiting for space ...", c->thread_hd );
|
||
WaitForSingleObject (c->have_space_ev, INFINITE);
|
||
DEBUG1 ("reader thread %p: got space", c->thread_hd );
|
||
LOCK (c->mutex);
|
||
}
|
||
if ( c->stop_me ) {
|
||
UNLOCK (c->mutex);
|
||
break;
|
||
}
|
||
nbytes = (c->readpos + READBUF_SIZE - c->writepos-1) % READBUF_SIZE;
|
||
if ( nbytes > READBUF_SIZE - c->writepos )
|
||
nbytes = READBUF_SIZE - c->writepos;
|
||
UNLOCK (c->mutex);
|
||
|
||
DEBUG2 ("reader thread %p: reading %d bytes", c->thread_hd, nbytes );
|
||
if ( !ReadFile ( c->file_hd,
|
||
c->buffer+c->writepos, nbytes, &nread, NULL) ) {
|
||
c->error_code = (int)GetLastError ();
|
||
if (c->error_code == ERROR_BROKEN_PIPE ) {
|
||
c->eof=1;
|
||
DEBUG1 ("reader thread %p: got eof (broken pipe)",
|
||
c->thread_hd );
|
||
}
|
||
else {
|
||
c->error = 1;
|
||
DEBUG2 ("reader thread %p: read error: ec=%d",
|
||
c->thread_hd, c->error_code );
|
||
}
|
||
break;
|
||
}
|
||
if ( !nread ) {
|
||
c->eof = 1;
|
||
DEBUG1 ("reader thread %p: got eof", c->thread_hd );
|
||
break;
|
||
}
|
||
DEBUG2 ("reader thread %p: got %d bytes", c->thread_hd, (int)nread );
|
||
|
||
LOCK (c->mutex);
|
||
if (c->stop_me) {
|
||
UNLOCK (c->mutex);
|
||
break;
|
||
}
|
||
c->writepos = (c->writepos + nread) % READBUF_SIZE;
|
||
if ( !SetEvent (c->have_data_ev) )
|
||
DEBUG1 ("SetEvent failed: ec=%d", (int)GetLastError ());
|
||
UNLOCK (c->mutex);
|
||
}
|
||
/* indicate that we have an error or eof */
|
||
if ( !SetEvent (c->have_data_ev) )
|
||
DEBUG1 ("SetEvent failed: ec=%d", (int)GetLastError ());
|
||
DEBUG1 ("reader thread %p ended", c->thread_hd );
|
||
SetEvent (c->stopped);
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
static struct reader_context_s *
|
||
create_reader (HANDLE fd)
|
||
{
|
||
struct reader_context_s *c;
|
||
SECURITY_ATTRIBUTES sec_attr;
|
||
DWORD tid;
|
||
|
||
DEBUG1 ("creating new read thread for file handle %p", fd );
|
||
memset (&sec_attr, 0, sizeof sec_attr );
|
||
sec_attr.nLength = sizeof sec_attr;
|
||
sec_attr.bInheritHandle = FALSE;
|
||
|
||
c = calloc (1, sizeof *c );
|
||
if (!c)
|
||
return NULL;
|
||
|
||
c->file_hd = fd;
|
||
c->have_data_ev = CreateEvent (&sec_attr, TRUE, FALSE, NULL);
|
||
c->have_space_ev = CreateEvent (&sec_attr, FALSE, TRUE, NULL);
|
||
c->stopped = CreateEvent (&sec_attr, TRUE, FALSE, NULL);
|
||
if (!c->have_data_ev || !c->have_space_ev || !c->stopped ) {
|
||
DEBUG1 ("** CreateEvent failed: ec=%d\n", (int)GetLastError ());
|
||
if (c->have_data_ev)
|
||
CloseHandle (c->have_data_ev);
|
||
if (c->have_space_ev)
|
||
CloseHandle (c->have_space_ev);
|
||
if (c->stopped)
|
||
CloseHandle (c->stopped);
|
||
free (c);
|
||
return NULL;
|
||
}
|
||
|
||
c->have_data_ev = set_synchronize (c->have_data_ev);
|
||
INIT_LOCK (c->mutex);
|
||
|
||
c->thread_hd = CreateThread (&sec_attr, 0, reader, c, 0, &tid );
|
||
if (!c->thread_hd) {
|
||
DEBUG1 ("** failed to create reader thread: ec=%d\n",
|
||
(int)GetLastError ());
|
||
DESTROY_LOCK (c->mutex);
|
||
if (c->have_data_ev)
|
||
CloseHandle (c->have_data_ev);
|
||
if (c->have_space_ev)
|
||
CloseHandle (c->have_space_ev);
|
||
if (c->stopped)
|
||
CloseHandle (c->stopped);
|
||
free (c);
|
||
return NULL;
|
||
}
|
||
else {
|
||
/* We set the priority of the thread higher because we know that
|
||
it only runs for a short time. This greatly helps to increase
|
||
the performance of the I/O. */
|
||
SetThreadPriority (c->thread_hd, get_desired_thread_priority ());
|
||
}
|
||
|
||
return c;
|
||
}
|
||
|
||
static void
|
||
destroy_reader (struct reader_context_s *c)
|
||
{
|
||
LOCK (c->mutex);
|
||
c->stop_me = 1;
|
||
if (c->have_space_ev)
|
||
SetEvent (c->have_space_ev);
|
||
UNLOCK (c->mutex);
|
||
|
||
DEBUG1 ("waiting for thread %p termination ...", c->thread_hd );
|
||
WaitForSingleObject (c->stopped, INFINITE);
|
||
DEBUG1 ("thread %p has terminated", c->thread_hd );
|
||
|
||
if (c->stopped)
|
||
CloseHandle (c->stopped);
|
||
if (c->have_data_ev)
|
||
CloseHandle (c->have_data_ev);
|
||
if (c->have_space_ev)
|
||
CloseHandle (c->have_space_ev);
|
||
CloseHandle (c->thread_hd);
|
||
DESTROY_LOCK (c->mutex);
|
||
free (c);
|
||
}
|
||
|
||
|
||
/*
|
||
* Find a reader context or create a new one
|
||
* Note that the reader context will last until a io_close.
|
||
*/
|
||
static struct reader_context_s *
|
||
find_reader (int fd, int start_it)
|
||
{
|
||
int i;
|
||
|
||
for (i=0; i < reader_table_size ; i++ ) {
|
||
if ( reader_table[i].used && reader_table[i].fd == fd )
|
||
return reader_table[i].context;
|
||
}
|
||
if (!start_it)
|
||
return NULL;
|
||
|
||
LOCK (reader_table_lock);
|
||
for (i=0; i < reader_table_size; i++ ) {
|
||
if (!reader_table[i].used) {
|
||
reader_table[i].fd = fd;
|
||
reader_table[i].context = create_reader (fd_to_handle (fd));
|
||
reader_table[i].used = 1;
|
||
UNLOCK (reader_table_lock);
|
||
return reader_table[i].context;
|
||
}
|
||
}
|
||
UNLOCK (reader_table_lock);
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static void
|
||
kill_reader (int fd)
|
||
{
|
||
int i;
|
||
|
||
LOCK (reader_table_lock);
|
||
for (i=0; i < reader_table_size; i++ ) {
|
||
if (reader_table[i].used && reader_table[i].fd == fd ) {
|
||
destroy_reader (reader_table[i].context);
|
||
reader_table[i].context = NULL;
|
||
reader_table[i].used = 0;
|
||
break;
|
||
}
|
||
}
|
||
UNLOCK (reader_table_lock);
|
||
}
|
||
|
||
|
||
|
||
int
|
||
_gpgme_io_read ( int fd, void *buffer, size_t count )
|
||
{
|
||
int nread;
|
||
struct reader_context_s *c = find_reader (fd,1);
|
||
|
||
DEBUG2 ("fd %d: about to read %d bytes\n", fd, (int)count );
|
||
if ( !c ) {
|
||
DEBUG0 ( "no reader thread\n");
|
||
return -1;
|
||
}
|
||
if (c->eof_shortcut) {
|
||
DEBUG1 ("fd %d: EOF (again)", fd );
|
||
return 0;
|
||
}
|
||
|
||
LOCK (c->mutex);
|
||
if (c->readpos == c->writepos && !c->error) { /*no data avail*/
|
||
UNLOCK (c->mutex);
|
||
DEBUG2 ("fd %d: waiting for data from thread %p", fd, c->thread_hd);
|
||
WaitForSingleObject (c->have_data_ev, INFINITE);
|
||
DEBUG2 ("fd %d: data from thread %p available", fd, c->thread_hd);
|
||
LOCK (c->mutex);
|
||
}
|
||
|
||
if (c->readpos == c->writepos || c->error) {
|
||
UNLOCK (c->mutex);
|
||
c->eof_shortcut = 1;
|
||
if (c->eof) {
|
||
DEBUG1 ("fd %d: EOF", fd );
|
||
return 0;
|
||
}
|
||
if (!c->error) {
|
||
DEBUG1 ("fd %d: EOF but eof flag not set", fd );
|
||
return 0;
|
||
}
|
||
DEBUG1 ("fd %d: read error", fd );
|
||
return -1;
|
||
}
|
||
|
||
nread = c->readpos < c->writepos? c->writepos - c->readpos
|
||
: READBUF_SIZE - c->readpos;
|
||
if (nread > count)
|
||
nread = count;
|
||
memcpy (buffer, c->buffer+c->readpos, nread);
|
||
c->readpos = (c->readpos + nread) % READBUF_SIZE;
|
||
if (c->readpos == c->writepos && !c->eof) {
|
||
if ( !ResetEvent (c->have_data_ev) )
|
||
DEBUG1 ("ResetEvent failed: ec=%d", (int)GetLastError ());
|
||
}
|
||
if (!SetEvent (c->have_space_ev))
|
||
DEBUG1 ("SetEvent failed: ec=%d", (int)GetLastError ());
|
||
UNLOCK (c->mutex);
|
||
|
||
DEBUG2 ("fd %d: got %d bytes\n", fd, nread );
|
||
if (nread > 0)
|
||
_gpgme_debug (2, "fd %d: got `%.*s'\n", fd, nread, buffer);
|
||
|
||
return nread;
|
||
}
|
||
/*
|
||
* The writer does use a simple buffering strategy so that we are
|
||
* informed about write errors as soon as possible (i.e. with the the
|
||
* next call to the write function
|
||
*/
|
||
static DWORD CALLBACK
|
||
writer (void *arg)
|
||
{
|
||
struct writer_context_s *c = arg;
|
||
DWORD nwritten;
|
||
|
||
DEBUG2 ("writer thread %p for file %p started", c->thread_hd, c->file_hd );
|
||
for (;;) {
|
||
LOCK (c->mutex);
|
||
if ( c->stop_me ) {
|
||
UNLOCK (c->mutex);
|
||
break;
|
||
}
|
||
if ( !c->nbytes ) {
|
||
if (!SetEvent (c->is_empty))
|
||
DEBUG1 ("SetEvent failed: ec=%d", (int)GetLastError ());
|
||
if (!ResetEvent (c->have_data) )
|
||
DEBUG1 ("ResetEvent failed: ec=%d", (int)GetLastError ());
|
||
UNLOCK (c->mutex);
|
||
DEBUG1 ("writer thread %p: idle ...", c->thread_hd );
|
||
WaitForSingleObject (c->have_data, INFINITE);
|
||
DEBUG1 ("writer thread %p: got data to send", c->thread_hd );
|
||
LOCK (c->mutex);
|
||
}
|
||
if ( c->stop_me ) {
|
||
UNLOCK (c->mutex);
|
||
break;
|
||
}
|
||
UNLOCK (c->mutex);
|
||
|
||
DEBUG2 ("writer thread %p: writing %d bytes",
|
||
c->thread_hd, c->nbytes );
|
||
if ( c->nbytes && !WriteFile ( c->file_hd, c->buffer, c->nbytes,
|
||
&nwritten, NULL)) {
|
||
c->error_code = (int)GetLastError ();
|
||
c->error = 1;
|
||
DEBUG2 ("writer thread %p: write error: ec=%d",
|
||
c->thread_hd, c->error_code );
|
||
break;
|
||
}
|
||
DEBUG2 ("writer thread %p: wrote %d bytes",
|
||
c->thread_hd, (int)nwritten );
|
||
|
||
LOCK (c->mutex);
|
||
c->nbytes -= nwritten;
|
||
UNLOCK (c->mutex);
|
||
}
|
||
/* indicate that we have an error */
|
||
if ( !SetEvent (c->is_empty) )
|
||
DEBUG1 ("SetEvent failed: ec=%d", (int)GetLastError ());
|
||
DEBUG1 ("writer thread %p ended", c->thread_hd );
|
||
SetEvent (c->stopped);
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
static struct writer_context_s *
|
||
create_writer (HANDLE fd)
|
||
{
|
||
struct writer_context_s *c;
|
||
SECURITY_ATTRIBUTES sec_attr;
|
||
DWORD tid;
|
||
|
||
DEBUG1 ("creating new write thread for file handle %p", fd );
|
||
memset (&sec_attr, 0, sizeof sec_attr );
|
||
sec_attr.nLength = sizeof sec_attr;
|
||
sec_attr.bInheritHandle = FALSE;
|
||
|
||
c = calloc (1, sizeof *c );
|
||
if (!c)
|
||
return NULL;
|
||
|
||
c->file_hd = fd;
|
||
c->have_data = CreateEvent (&sec_attr, TRUE, FALSE, NULL);
|
||
c->is_empty = CreateEvent (&sec_attr, TRUE, TRUE, NULL);
|
||
c->stopped = CreateEvent (&sec_attr, TRUE, FALSE, NULL);
|
||
if (!c->have_data || !c->is_empty || !c->stopped ) {
|
||
DEBUG1 ("** CreateEvent failed: ec=%d\n", (int)GetLastError ());
|
||
if (c->have_data)
|
||
CloseHandle (c->have_data);
|
||
if (c->is_empty)
|
||
CloseHandle (c->is_empty);
|
||
if (c->stopped)
|
||
CloseHandle (c->stopped);
|
||
free (c);
|
||
return NULL;
|
||
}
|
||
|
||
c->is_empty = set_synchronize (c->is_empty);
|
||
INIT_LOCK (c->mutex);
|
||
|
||
c->thread_hd = CreateThread (&sec_attr, 0, writer, c, 0, &tid );
|
||
if (!c->thread_hd) {
|
||
DEBUG1 ("** failed to create writer thread: ec=%d\n",
|
||
(int)GetLastError ());
|
||
DESTROY_LOCK (c->mutex);
|
||
if (c->have_data)
|
||
CloseHandle (c->have_data);
|
||
if (c->is_empty)
|
||
CloseHandle (c->is_empty);
|
||
if (c->stopped)
|
||
CloseHandle (c->stopped);
|
||
free (c);
|
||
return NULL;
|
||
}
|
||
else {
|
||
/* We set the priority of the thread higher because we know that
|
||
it only runs for a short time. This greatly helps to increase
|
||
the performance of the I/O. */
|
||
SetThreadPriority (c->thread_hd, get_desired_thread_priority ());
|
||
}
|
||
|
||
return c;
|
||
}
|
||
|
||
static void
|
||
destroy_writer (struct writer_context_s *c)
|
||
{
|
||
LOCK (c->mutex);
|
||
c->stop_me = 1;
|
||
if (c->have_data)
|
||
SetEvent (c->have_data);
|
||
UNLOCK (c->mutex);
|
||
|
||
DEBUG1 ("waiting for thread %p termination ...", c->thread_hd );
|
||
WaitForSingleObject (c->stopped, INFINITE);
|
||
DEBUG1 ("thread %p has terminated", c->thread_hd );
|
||
|
||
if (c->stopped)
|
||
CloseHandle (c->stopped);
|
||
if (c->have_data)
|
||
CloseHandle (c->have_data);
|
||
if (c->is_empty)
|
||
CloseHandle (c->is_empty);
|
||
CloseHandle (c->thread_hd);
|
||
DESTROY_LOCK (c->mutex);
|
||
free (c);
|
||
}
|
||
|
||
|
||
/*
|
||
* Find a writer context or create a new one
|
||
* Note that the writer context will last until a io_close.
|
||
*/
|
||
static struct writer_context_s *
|
||
find_writer (int fd, int start_it)
|
||
{
|
||
int i;
|
||
|
||
for (i=0; i < writer_table_size ; i++ ) {
|
||
if ( writer_table[i].used && writer_table[i].fd == fd )
|
||
return writer_table[i].context;
|
||
}
|
||
if (!start_it)
|
||
return NULL;
|
||
|
||
LOCK (writer_table_lock);
|
||
for (i=0; i < writer_table_size; i++ ) {
|
||
if (!writer_table[i].used) {
|
||
writer_table[i].fd = fd;
|
||
writer_table[i].context = create_writer (fd_to_handle (fd));
|
||
writer_table[i].used = 1;
|
||
UNLOCK (writer_table_lock);
|
||
return writer_table[i].context;
|
||
}
|
||
}
|
||
UNLOCK (writer_table_lock);
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static void
|
||
kill_writer (int fd)
|
||
{
|
||
int i;
|
||
|
||
LOCK (writer_table_lock);
|
||
for (i=0; i < writer_table_size; i++ ) {
|
||
if (writer_table[i].used && writer_table[i].fd == fd ) {
|
||
destroy_writer (writer_table[i].context);
|
||
writer_table[i].context = NULL;
|
||
writer_table[i].used = 0;
|
||
break;
|
||
}
|
||
}
|
||
UNLOCK (writer_table_lock);
|
||
}
|
||
|
||
|
||
|
||
|
||
int
|
||
_gpgme_io_write ( int fd, const void *buffer, size_t count )
|
||
{
|
||
struct writer_context_s *c = find_writer (fd,1);
|
||
|
||
DEBUG2 ("fd %d: about to write %d bytes\n", fd, (int)count );
|
||
_gpgme_debug (2, "fd %d: write `%.*s'\n", fd, (int) count, buffer);
|
||
if ( !c ) {
|
||
DEBUG0 ( "no writer thread\n");
|
||
return -1;
|
||
}
|
||
|
||
LOCK (c->mutex);
|
||
if ( c->nbytes ) { /* bytes are pending for send */
|
||
/* Reset the is_empty event. Better safe than sorry. */
|
||
if (!ResetEvent (c->is_empty))
|
||
DEBUG1 ("ResetEvent failed: ec=%d", (int)GetLastError ());
|
||
UNLOCK (c->mutex);
|
||
DEBUG2 ("fd %d: waiting for empty buffer in thread %p",
|
||
fd, c->thread_hd);
|
||
WaitForSingleObject (c->is_empty, INFINITE);
|
||
DEBUG2 ("fd %d: thread %p buffer is empty", fd, c->thread_hd);
|
||
LOCK (c->mutex);
|
||
}
|
||
|
||
if ( c->error) {
|
||
UNLOCK (c->mutex);
|
||
DEBUG1 ("fd %d: write error", fd );
|
||
return -1;
|
||
}
|
||
|
||
/* If no error occured, the number of bytes in the buffer must be
|
||
zero. */
|
||
assert (!c->nbytes);
|
||
|
||
if (count > WRITEBUF_SIZE)
|
||
count = WRITEBUF_SIZE;
|
||
memcpy (c->buffer, buffer, count);
|
||
c->nbytes = count;
|
||
|
||
/* We have to reset the is_empty event early, because it is also
|
||
used by the select() implementation to probe the channel. */
|
||
if (!ResetEvent (c->is_empty))
|
||
DEBUG1 ("ResetEvent failed: ec=%d", (int)GetLastError ());
|
||
if (!SetEvent (c->have_data))
|
||
DEBUG1 ("SetEvent failed: ec=%d", (int)GetLastError ());
|
||
UNLOCK (c->mutex);
|
||
|
||
DEBUG2 ("fd %d: copied %d bytes\n",
|
||
fd, (int)count );
|
||
return (int)count;
|
||
}
|
||
|
||
|
||
int
|
||
_gpgme_io_pipe ( int filedes[2], int inherit_idx )
|
||
{
|
||
HANDLE r, w;
|
||
SECURITY_ATTRIBUTES sec_attr;
|
||
|
||
memset (&sec_attr, 0, sizeof sec_attr );
|
||
sec_attr.nLength = sizeof sec_attr;
|
||
sec_attr.bInheritHandle = FALSE;
|
||
|
||
if (!CreatePipe ( &r, &w, &sec_attr, PIPEBUF_SIZE))
|
||
return -1;
|
||
/* Make one end inheritable. */
|
||
if ( inherit_idx == 0 ) {
|
||
HANDLE h;
|
||
if (!DuplicateHandle( GetCurrentProcess(), r,
|
||
GetCurrentProcess(), &h, 0,
|
||
TRUE, DUPLICATE_SAME_ACCESS ) ) {
|
||
DEBUG1 ("DuplicateHandle failed: ec=%d\n", (int)GetLastError());
|
||
CloseHandle (r);
|
||
CloseHandle (w);
|
||
return -1;
|
||
}
|
||
CloseHandle (r);
|
||
r = h;
|
||
}
|
||
else if ( inherit_idx == 1 ) {
|
||
HANDLE h;
|
||
if (!DuplicateHandle( GetCurrentProcess(), w,
|
||
GetCurrentProcess(), &h, 0,
|
||
TRUE, DUPLICATE_SAME_ACCESS ) ) {
|
||
DEBUG1 ("DuplicateHandle failed: ec=%d\n", (int)GetLastError());
|
||
CloseHandle (r);
|
||
CloseHandle (w);
|
||
return -1;
|
||
}
|
||
CloseHandle (w);
|
||
w = h;
|
||
}
|
||
|
||
filedes[0] = handle_to_fd (r);
|
||
filedes[1] = handle_to_fd (w);
|
||
DEBUG5 ("CreatePipe %p %p %d %d inherit=%d\n", r, w,
|
||
filedes[0], filedes[1], inherit_idx );
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
_gpgme_io_close ( int fd )
|
||
{
|
||
int i;
|
||
void (*handler)(int, void*) = NULL;
|
||
void *value = NULL;
|
||
|
||
if ( fd == -1 )
|
||
return -1;
|
||
|
||
DEBUG1 ("** closing handle for fd %d\n", fd);
|
||
kill_reader (fd);
|
||
kill_writer (fd);
|
||
LOCK (notify_table_lock);
|
||
for ( i=0; i < DIM (notify_table); i++ ) {
|
||
if (notify_table[i].inuse && notify_table[i].fd == fd) {
|
||
handler = notify_table[i].handler;
|
||
value = notify_table[i].value;
|
||
notify_table[i].handler = NULL;
|
||
notify_table[i].value = NULL;
|
||
notify_table[i].inuse = 0;
|
||
break;
|
||
}
|
||
}
|
||
UNLOCK (notify_table_lock);
|
||
if (handler)
|
||
handler (fd, value);
|
||
|
||
if ( !CloseHandle (fd_to_handle (fd)) ) {
|
||
DEBUG2 ("CloseHandle for fd %d failed: ec=%d\n",
|
||
fd, (int)GetLastError ());
|
||
return -1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
_gpgme_io_set_close_notify (int fd, void (*handler)(int, void*), void *value)
|
||
{
|
||
int i;
|
||
|
||
assert (fd != -1);
|
||
|
||
LOCK (notify_table_lock);
|
||
for (i=0; i < DIM (notify_table); i++ ) {
|
||
if ( notify_table[i].inuse && notify_table[i].fd == fd )
|
||
break;
|
||
}
|
||
if ( i == DIM (notify_table) ) {
|
||
for (i=0; i < DIM (notify_table); i++ ) {
|
||
if ( !notify_table[i].inuse )
|
||
break;
|
||
}
|
||
}
|
||
if ( i == DIM (notify_table) ) {
|
||
UNLOCK (notify_table_lock);
|
||
return -1;
|
||
}
|
||
notify_table[i].fd = fd;
|
||
notify_table[i].handler = handler;
|
||
notify_table[i].value = value;
|
||
notify_table[i].inuse = 1;
|
||
UNLOCK (notify_table_lock);
|
||
DEBUG2 ("set notification for fd %d (idx=%d)", fd, i );
|
||
return 0;
|
||
}
|
||
|
||
|
||
int
|
||
_gpgme_io_set_nonblocking ( int fd )
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
|
||
static char *
|
||
build_commandline (char **argv)
|
||
{
|
||
int i;
|
||
int j;
|
||
int n = 0;
|
||
char *buf;
|
||
char *p;
|
||
|
||
/* We have to quote some things because under Windows the program
|
||
parses the commandline and does some unquoting. We enclose the
|
||
whole argument in double-quotes, and escape literal double-quotes
|
||
as well as backslashes with a backslash. We end up with a
|
||
trailing space at the end of the line, but that is harmless. */
|
||
for (i = 0; argv[i]; i++)
|
||
{
|
||
p = argv[i];
|
||
/* The leading double-quote. */
|
||
n++;
|
||
while (*p)
|
||
{
|
||
/* An extra one for each literal that must be escaped. */
|
||
if (*p == '\\' || *p == '"')
|
||
n++;
|
||
n++;
|
||
p++;
|
||
}
|
||
/* The trailing double-quote and the delimiter. */
|
||
n += 2;
|
||
}
|
||
/* And a trailing zero. */
|
||
n++;
|
||
|
||
buf = p = malloc (n);
|
||
if (!buf)
|
||
return NULL;
|
||
for (i = 0; argv[i]; i++)
|
||
{
|
||
char *argvp = argv[i];
|
||
|
||
*(p++) = '"';
|
||
while (*argvp)
|
||
{
|
||
if (*argvp == '\\' || *argvp == '"')
|
||
*(p++) = '\\';
|
||
*(p++) = *(argvp++);
|
||
}
|
||
*(p++) = '"';
|
||
*(p++) = ' ';
|
||
}
|
||
*(p++) = 0;
|
||
|
||
return buf;
|
||
}
|
||
|
||
|
||
int
|
||
_gpgme_io_spawn ( const char *path, char **argv,
|
||
struct spawn_fd_item_s *fd_child_list,
|
||
struct spawn_fd_item_s *fd_parent_list )
|
||
{
|
||
SECURITY_ATTRIBUTES sec_attr;
|
||
PROCESS_INFORMATION pi = {
|
||
NULL, /* returns process handle */
|
||
0, /* returns primary thread handle */
|
||
0, /* returns pid */
|
||
0 /* returns tid */
|
||
};
|
||
STARTUPINFO si;
|
||
char *envblock = NULL;
|
||
int cr_flags = CREATE_DEFAULT_ERROR_MODE
|
||
| GetPriorityClass (GetCurrentProcess ());
|
||
int i;
|
||
char *arg_string;
|
||
int duped_stdin = 0;
|
||
int duped_stderr = 0;
|
||
HANDLE hnul = INVALID_HANDLE_VALUE;
|
||
/* FIXME. */
|
||
int debug_me = 0;
|
||
|
||
memset (&sec_attr, 0, sizeof sec_attr );
|
||
sec_attr.nLength = sizeof sec_attr;
|
||
sec_attr.bInheritHandle = FALSE;
|
||
|
||
arg_string = build_commandline ( argv );
|
||
if (!arg_string )
|
||
return -1;
|
||
|
||
memset (&si, 0, sizeof si);
|
||
si.cb = sizeof (si);
|
||
si.dwFlags = STARTF_USESTDHANDLES | STARTF_USESHOWWINDOW;
|
||
si.wShowWindow = debug_me? SW_SHOW : SW_HIDE;
|
||
si.hStdInput = GetStdHandle (STD_INPUT_HANDLE);
|
||
si.hStdOutput = GetStdHandle (STD_OUTPUT_HANDLE);
|
||
si.hStdError = GetStdHandle (STD_ERROR_HANDLE);
|
||
|
||
for (i=0; fd_child_list[i].fd != -1; i++ ) {
|
||
if (fd_child_list[i].dup_to == 0 ) {
|
||
si.hStdInput = fd_to_handle (fd_child_list[i].fd);
|
||
DEBUG1 ("using %d for stdin", fd_child_list[i].fd );
|
||
duped_stdin=1;
|
||
}
|
||
else if (fd_child_list[i].dup_to == 1 ) {
|
||
si.hStdOutput = fd_to_handle (fd_child_list[i].fd);
|
||
DEBUG1 ("using %d for stdout", fd_child_list[i].fd );
|
||
}
|
||
else if (fd_child_list[i].dup_to == 2 ) {
|
||
si.hStdError = fd_to_handle (fd_child_list[i].fd);
|
||
DEBUG1 ("using %d for stderr", fd_child_list[i].fd );
|
||
duped_stderr = 1;
|
||
}
|
||
}
|
||
|
||
if( !duped_stdin || !duped_stderr ) {
|
||
SECURITY_ATTRIBUTES sa;
|
||
|
||
memset (&sa, 0, sizeof sa );
|
||
sa.nLength = sizeof sa;
|
||
sa.bInheritHandle = TRUE;
|
||
hnul = CreateFile ( "nul",
|
||
GENERIC_READ|GENERIC_WRITE,
|
||
FILE_SHARE_READ|FILE_SHARE_WRITE,
|
||
&sa,
|
||
OPEN_EXISTING,
|
||
FILE_ATTRIBUTE_NORMAL,
|
||
NULL );
|
||
if ( hnul == INVALID_HANDLE_VALUE ) {
|
||
DEBUG1 ("can't open `nul': ec=%d\n", (int)GetLastError ());
|
||
free (arg_string);
|
||
return -1;
|
||
}
|
||
/* Make sure that the process has a connected stdin */
|
||
if ( !duped_stdin ) {
|
||
si.hStdInput = hnul;
|
||
DEBUG1 ("using %d for dummy stdin", (int)hnul );
|
||
}
|
||
/* We normally don't want all the normal output */
|
||
if ( !duped_stderr ) {
|
||
si.hStdError = hnul;
|
||
DEBUG1 ("using %d for dummy stderr", (int)hnul );
|
||
}
|
||
}
|
||
|
||
DEBUG2 ("CreateProcess, path=`%s' args=`%s'", path, arg_string);
|
||
cr_flags |= CREATE_SUSPENDED;
|
||
if ( !CreateProcessA (path,
|
||
arg_string,
|
||
&sec_attr, /* process security attributes */
|
||
&sec_attr, /* thread security attributes */
|
||
TRUE, /* inherit handles */
|
||
cr_flags, /* creation flags */
|
||
envblock, /* environment */
|
||
NULL, /* use current drive/directory */
|
||
&si, /* startup information */
|
||
&pi /* returns process information */
|
||
) ) {
|
||
DEBUG1 ("CreateProcess failed: ec=%d\n", (int) GetLastError ());
|
||
free (arg_string);
|
||
return -1;
|
||
}
|
||
|
||
/* Close the /dev/nul handle if used. */
|
||
if (hnul != INVALID_HANDLE_VALUE ) {
|
||
if ( !CloseHandle ( hnul ) )
|
||
DEBUG1 ("CloseHandle(hnul) failed: ec=%d\n", (int)GetLastError());
|
||
}
|
||
|
||
/* Close the other ends of the pipes. */
|
||
for (i = 0; fd_parent_list[i].fd != -1; i++)
|
||
_gpgme_io_close (fd_parent_list[i].fd);
|
||
|
||
DEBUG4 ("CreateProcess ready\n"
|
||
"- hProcess=%p hThread=%p\n"
|
||
"- dwProcessID=%d dwThreadId=%d\n",
|
||
pi.hProcess, pi.hThread,
|
||
(int) pi.dwProcessId, (int) pi.dwThreadId);
|
||
|
||
if ( ResumeThread ( pi.hThread ) < 0 ) {
|
||
DEBUG1 ("ResumeThread failed: ec=%d\n", (int)GetLastError ());
|
||
}
|
||
|
||
if ( !CloseHandle (pi.hThread) ) {
|
||
DEBUG1 ("CloseHandle of thread failed: ec=%d\n",
|
||
(int)GetLastError ());
|
||
}
|
||
|
||
return handle_to_pid (pi.hProcess);
|
||
}
|
||
|
||
|
||
/*
|
||
* Select on the list of fds.
|
||
* Returns: -1 = error
|
||
* 0 = timeout or nothing to select
|
||
* >0 = number of signaled fds
|
||
*/
|
||
int
|
||
_gpgme_io_select ( struct io_select_fd_s *fds, size_t nfds, int nonblock )
|
||
{
|
||
HANDLE waitbuf[MAXIMUM_WAIT_OBJECTS];
|
||
int waitidx[MAXIMUM_WAIT_OBJECTS];
|
||
int code, nwait;
|
||
int i, any;
|
||
int count;
|
||
void *dbg_help;
|
||
|
||
restart:
|
||
DEBUG_BEGIN (dbg_help, 3, "select on [ ");
|
||
any = 0;
|
||
nwait = 0;
|
||
count = 0;
|
||
for ( i=0; i < nfds; i++ ) {
|
||
if ( fds[i].fd == -1 )
|
||
continue;
|
||
fds[i].signaled = 0;
|
||
if ( fds[i].for_read || fds[i].for_write ) {
|
||
if ( fds[i].frozen ) {
|
||
DEBUG_ADD1 (dbg_help, "f%d ", fds[i].fd );
|
||
}
|
||
else if ( fds[i].for_read ) {
|
||
struct reader_context_s *c = find_reader (fds[i].fd,1);
|
||
|
||
if (!c) {
|
||
DEBUG1 ("oops: no reader thread for fd %d", fds[i].fd);
|
||
}
|
||
else {
|
||
if ( nwait >= DIM (waitbuf) ) {
|
||
DEBUG_END (dbg_help, "oops ]");
|
||
DEBUG0 ("Too many objects for WFMO!" );
|
||
return -1;
|
||
}
|
||
waitidx[nwait] = i;
|
||
waitbuf[nwait++] = c->have_data_ev;
|
||
}
|
||
DEBUG_ADD1 (dbg_help, "r%d ", fds[i].fd );
|
||
any = 1;
|
||
}
|
||
else if ( fds[i].for_write ) {
|
||
struct writer_context_s *c = find_writer (fds[i].fd,1);
|
||
|
||
if (!c) {
|
||
DEBUG1 ("oops: no writer thread for fd %d", fds[i].fd);
|
||
}
|
||
else {
|
||
if ( nwait >= DIM (waitbuf) ) {
|
||
DEBUG_END (dbg_help, "oops ]");
|
||
DEBUG0 ("Too many objects for WFMO!" );
|
||
return -1;
|
||
}
|
||
waitidx[nwait] = i;
|
||
waitbuf[nwait++] = c->is_empty;
|
||
}
|
||
DEBUG_ADD1 (dbg_help, "w%d ", fds[i].fd );
|
||
any = 1;
|
||
}
|
||
}
|
||
}
|
||
DEBUG_END (dbg_help, "]");
|
||
if (!any)
|
||
return 0;
|
||
|
||
code = WaitForMultipleObjects ( nwait, waitbuf, 0, nonblock ? 0 : 1000);
|
||
if ( code >= WAIT_OBJECT_0 && code < WAIT_OBJECT_0 + nwait ) {
|
||
/* This WFMO is a really silly function: It does return either
|
||
* the index of the signaled object or if 2 objects have been
|
||
* signalled at the same time, the index of the object with the
|
||
* lowest object is returned - so and how do we find out
|
||
* how many objects have been signaled???.
|
||
* The only solution I can imagine is to test each object starting
|
||
* with the returned index individually - how dull.
|
||
*/
|
||
any = 0;
|
||
for (i=code - WAIT_OBJECT_0; i < nwait; i++ ) {
|
||
if (WaitForSingleObject (waitbuf[i], 0) == WAIT_OBJECT_0) {
|
||
assert (waitidx[i] >=0 && waitidx[i] < nfds);
|
||
fds[waitidx[i]].signaled = 1;
|
||
any = 1;
|
||
count++;
|
||
}
|
||
}
|
||
if (!any) {
|
||
DEBUG0 ("Oops: No signaled objects found after WFMO");
|
||
count = -1;
|
||
}
|
||
}
|
||
else if ( code == WAIT_TIMEOUT ) {
|
||
DEBUG0 ("WFMO timed out\n" );
|
||
}
|
||
else if (code == WAIT_FAILED ) {
|
||
int le = (int)GetLastError ();
|
||
if ( le == ERROR_INVALID_HANDLE ) {
|
||
int k, j = handle_to_fd (waitbuf[i]);
|
||
|
||
DEBUG1 ("WFMO invalid handle %d removed\n", j);
|
||
for (k=0 ; k < nfds; k++ ) {
|
||
if ( fds[k].fd == j ) {
|
||
fds[k].for_read = fds[k].for_write = 0;
|
||
goto restart;
|
||
}
|
||
}
|
||
DEBUG0 (" oops, or not???\n");
|
||
}
|
||
DEBUG1 ("WFMO failed: %d\n", le );
|
||
count = -1;
|
||
}
|
||
else {
|
||
DEBUG1 ("WFMO returned %d\n", code );
|
||
count = -1;
|
||
}
|
||
|
||
if ( count ) {
|
||
DEBUG_BEGIN (dbg_help, 3, " signaled [ ");
|
||
for ( i=0; i < nfds; i++ ) {
|
||
if ( fds[i].fd == -1 )
|
||
continue;
|
||
if ( (fds[i].for_read || fds[i].for_write) && fds[i].signaled ) {
|
||
DEBUG_ADD2 (dbg_help, "%c%d ",
|
||
fds[i].for_read? 'r':'w',fds[i].fd );
|
||
}
|
||
}
|
||
DEBUG_END (dbg_help, "]");
|
||
}
|
||
|
||
return count;
|
||
}
|
||
|
||
void
|
||
_gpgme_io_subsystem_init (void)
|
||
{
|
||
|
||
}
|
||
|
||
|
||
/* Write the printable version of FD to the buffer BUF of length
|
||
BUFLEN. The printable version is the representation on the command
|
||
line that the child process expects. */
|
||
int
|
||
_gpgme_io_fd2str (char *buf, int buflen, int fd)
|
||
{
|
||
return snprintf (buf, buflen, "%d", fd);
|
||
}
|
||
|
||
|
||
/* The following interface is only useful for GPGME Glib. */
|
||
|
||
/* Look up the giochannel for file descriptor FD. */
|
||
void *
|
||
gpgme_get_giochannel (int fd)
|
||
{
|
||
return NULL;
|
||
}
|
||
|